Evaluated Gas Phase Basicities and Proton Affinities of Molecules; Heats of Formation of Protonated Molecules

Sharon G. Lias

Center for Chemical Physics, National Bureau of Standards, Gaithersburg, MD 20899

Joel F. Liebman

Department of Chemistry, University of Maryland Baltimore County, Catonsville, MD 21228

and

Rhoda D. Levin

Center for Chemical Physics, National Bureau of Standards, Gaithersburg, MD 20899

The available data on gas phase basicities and proton affinities of molecules are compiled and evaluated. Tables giving the molecules ordered (1) according to proton affinity and (2) according to empirical formula, sorted alphabetically are provided. The heats of formation of the molecules and the corresponding protonated species are also listed.

Key words: basicity, heats of formation, ion-molecule reaction, proton affinity, proton transfer.

Contents

1.	Introd	luction		696			3.2.4.	Propylene	700
••	1.1.		ons	696			3.2.5.	Formaldehyde	701
	1.2.		Affinities and Gas Phase				3.2.6.	Water	701
			es: An Overview	696			3.2.7.	Ethylene	702
2.	Types		riment Leading to Proton				3.2.8.	Carbon monoxide	702
	Турсс	-	/Gas Basicity Data	696			3.2.9.	Carbon dioxide	702
	2.1.	-	e Proton Affinity Values from	0,0			3.2.10.	Oxygen atom	702
	2.1.		on Thresholds	697			3.2.11.	Molecular oxygen	702
	2.2.		Affinity Values from Thermoche-	0,7		3.3.		ry of Thermochemical Data on	, 02
	2.2.		formation Derived from Hydride			5.5.		ison Standards for Proton Affinity	
			r Equilibrium Constant Determi-						703
				697	4.	Evne		Error Limits	704
	2.3.		Gas Basicity Values from Proton	0) /	5.			the Tables	
	2.5.		r Equilibrium Constants	697	٥.	5.1.		ation of Table 1	704
	2.4.		e Gas Basicity/Proton Affinity	0,7		5.1.	-	st of Symbols Used in Table 1	
	2		from "Bracketing"	697		5.2.		ation of Table 2	708
	2.5.		ources of Proton Affinity/Gas	0) /		J.2.	5.2.1.	Conventions Used	708
	2.0.		Data	698			5.2.2.	Heats of Formation of Neutral	, 00
3.	Descr		the Evaluation	698			3.2.2.	Molecules	708
٥.	3.1.	_	odynamic Ladders	698			5.2.3.	References	
	٥.1.	3.1.1.	Entropy Changes	698	6.	Liter	:	rerage	
		3.1.2.	Temperature	698	7.			crage	
	3.2.		nent of Absolute Values to the	070	٠.	icic	ciicos	••••••••••••	/11
	5.2.	_	Reference Standards	699					
		3.2.1.	Ammonia	699				List of Tables	
		3.2.2.	Ketene	700					
		3.2.3.	Isobutene	700	1.	Gas	phase basi	cities and proton affinities	713
		J.2.J.	1500diche	700		Anno	otated refe	erences to Table 1	772
				_	2.	Prote	on affinition	es and heats of formation of	
			etary of Commerce on behalf of the United Seed to the American Institute of Physics an			mole	cules and	corresponding protonated	
		emical Soci		iu tiie		speci	es		782
			ACS; see Reprint List at back of issue.					Table 2	

1. Introduction

1.1. Definitions

The gas phase basicity and proton affinity of a molecule, M, are both defined in terms of the hypothetical reaction:

$$M + H^+ \rightarrow MH^+. \tag{1}$$

The gas phase basicity is the negative of the free energy change associated with this reaction, while the proton affinity is the negative of the corresponding enthalpy change.

1.2. Proton Affinities and Gas Phase Basicities: An Overview

Proton transfer reactions are of considerable importance in chemistry. Acid-base reactions have been studied extensively in solution for decades, but it is only in the past twenty years or so that experimental techniques have been devised to permit the quantitative study of the thermochemistry of proton transfer reactions in the gas phase. Particularly in the years since 1971, when the first gas phase ion-molecule equilibrium studies on proton transfer appeared, there has been a burgeoning of data in the literature, and consequently, a great interest in using information from such gas phase studies to distinguish between the chemical effects of solvation and the effects of intrinsic molecular properties. To date, although several excellent reviews of this active field of research have appeared¹⁻⁷, and two unevaluated compilations of data are available⁸⁻⁹, there was, until the current publication, no single reference which presented a comprehensive collection of data on gas phase proton affinities evaluated for internal consistency.

The vast majority of proton affinities presented here are based on measurements of the equilibrium constants of gas phase proton transfer reactions:

$$MH^+ + N \rightleftharpoons NH^+ + M \tag{2}$$

where:

$$-RT \ln K_{eq} = \Delta G_{Rn} = \Delta H_{Rn} - T\Delta S_{Rn} \qquad (3)$$

and the equilibrium constant for reaction 2 is obtained from a mass spectrometric observation of the relative abundances of equilibrated ions, MH⁺ and NH⁺, in a mixture of known composition of compounds M and N:

$$K_{eq} = [NH^+]/[MH^+]\cdot[M]/[N]$$
 (4)

The observed equilibrium constant of reaction 2 directly leads to a value for the Gibbs free energy

change of reaction, which represents the relative gas phase basicities of compounds M and N; if the entropy change of the reaction is determined, or can be reliably estimated, a value for the enthalpy change of reaction, or relative proton affinity, is obtained. Thus, the extensive scales of data presented here based on equilibrium constant measurements provide relative gas phase basicities and relative proton affinities, but do not directly give any information about absolute values of proton affinities, i.e., about the actual enthalpy changes of reaction 1 for the various compounds. Absolute values must be assigned based on some comparison standard incorporated in the thermochemical ladder for which heats of formation of both M and MH+ are independently available. These species will necessarily be limited to those for which an MH+ ion of known structure can be generated in a mass spectrometer, so that a reliable independent gas phase heat of formation will be known.

Thus, it must be emphasized that for data derived from equilibrium constant measurements, absolute values for proton affinities cited by authors depend on the proton affinity value selected for a comparison standard, and these may vary considerably from year to year, and from paper to paper. (For example, proton affinities varying from 202 kcal/mol to 210 kcal/mol have been cited for ammonia, which is often used as a comparison standard for scales of proton affinities). Although researchers working in the field are usually acutely aware of these arbitrary fluctuations in absolute values assigned to gas phase proton affinities, workers in related fields who seek to use these data often fall unwarily into the trap of using proton affinities from the literature without realizing that the experimental results actually lead only to relative thermochemical relationships, and that the absolute values assigned to proton affinities may have changed because of subsequent re-evaluations of the thermochemistry of a primary standard. The current publication seeks to provide a complete and internally-consistent set of gas phase proton affinity values based mainly on the vast body of data generated by equilibrium constant measurements, and to assign absolute values to the resulting proton affinity scale using the best current information about the thermochemistry of positive ions, imposing the requirement of internal consistency.

2. Types of Experiment Leading to Proton Affinity/Gas Basicity Data

In this compilation, as discussed above, most of the information is derived from scales of relative values for the gas basicities and proton affinities, based on (1) measurements of equilibrium constants of proton transfer reactions, or (2) use of the so-called "bracketing" technique. Absolute values are assigned to the scale using certain primary standards (discussed in

detail below), whose position in the proton affinity scale is known and for which well-established values of the heats of formation of both M and MH⁺ are available.

2.1. Absolute Proton Affinity Values from Ionization Thresholds

Experiments in which the heat of formation of MH⁺ is determined lead directly to values for the proton affinity when combined with a heat of formation of the corresponding neutral molecule, M. If MH is a sufficiently stable species that it can be introduced into a mass spectrometer or be generated in situ, or if MH⁺ exists as a fragmentation product from some larger molecular species, absolute values for the heat of formation of MH⁺ may be obtained through determinations of the ionization potential of MH:

$$MH \rightarrow MH^+ + e,$$
 (5)

or the appearance potential of MH⁺ from a larger molecule:

$$N \rightarrow MH^+ + A + e. \tag{6}$$

Because the heats of formation of MH⁺ are known from ionization potential or appearance potential determinations, such "absolute" proton affinity determinations are labelled "Threshold Value" in Table 1. Such absolute values for proton affinities are available for only a very few species of the 780 compounds on which data is reported here, largely because in most cases the neutral MH molecule does not exist, and the energetics of formation of an MH⁺ ion of the required structure in ionic fragmentation processes is not reliably established.

2.2. Proton Affinity Values from Thermochemical Information Derived from Hydride Transfer Equilibrium Constant Determinations

Values for heats of formation of a number of carbonium ions, $C_nH_{2n+1}^+$, are known from measurements of hydride transfer equilibrium constants in alkane mixtures:

$$C_n H_{2n+1}^+ + C_m H_{2m+2} \rightleftharpoons C_n H_{2n+2} + C_m H_{2m+1}^+. (7)$$

In systems for which the heats of formation of three reactant species have been independently established, the heat of formation of the fourth can be determined. Since a knowledge of the heat of formation of the $C_m H_{2m+1}^{+}$ carbonium ion can be used to calculate an absolute proton affinity value for the corresponding olefin, $C_m H_{2m}$, several values based on hydride transfer equilibria are also included in the compilation; the heats of formation of ions from such experiments are all related to the heat of formation of the tert-butyl ion as

a primary standard. (See below for a discussion of the heat of formation of this standard.)

2.3. Relative Gas Basicity Values from Proton Transfer Equilibrium Constants

During the past decade, there has been extensive use of gas phase ion-molecule equilibrium constant measurements to establish the relative basicities of chemical compounds in the absence of solvent effects. In these studies, carried out in a number of laboratories using mainly high pressure mass spectrometry, ion cyclotron resonance spectroscopy, and flowing afterglow experiments, the equilibrium constants associated with proton transfer reactions such as (2) are measured, yielding the relative gas basicities of M and N from the free energy change associated with the reaction at a given temperature (Eq. 3). If assumptions are made about the entropy changes associated with reaction 2, or if experimental determinations of the entropy change have been made (Sec. 3.1.1), values for relative gas phase basicities obtained in this way can be translated into scales of relative proton affinities. Although these equilibrium constants are determined mass spectrometrically at pressures of 10⁻⁶ torr to approximately 1 torr, there is abundant evidence¹⁻⁷ that thermodynamic equilibrium is achieved in this type of experiment.

2.4. Relative Gas Basicity/Proton Affinity Values from "Bracketing"

There are certain species for which measurements of equilibrium constants for proton transfer reactions are difficult or impossible. These include free radicals and species for which the MH⁺ ion undergoes fast reactions with M or alternate reaction channels with N. In these cases, the basicity is usually estimated using the technique known as "bracketing". In this approach, one reacts MH⁺ with a series of bases, observing whether or not proton transfer occurs:

$$MH^+ + B_1 \rightarrow B_1H^+ + M,$$
 (8)

$$MH^+ + B_2 \rightarrow No \text{ proton transfer.}$$
 (9)

The basicity of M is assumed to lie between those of B_1 and B_2 , and where these species have known gas basicity values, a value can be assigned to M. Results obtained through bracketing experiments are generally less reliable than those obtained through other methods because of numerous possible complications. For instance, exothermic proton transfer reactions sometimes do not occur when there is an energetically favorable alternate channel open to the reactants. Furthermore, endothermic proton transfer reactions can be observed if the reaction has a negative Gibbs free

energy change, or if the reaction is not endothermic by more than ~ 8 kJ/mol (~ 2 kcal/mol). Finally, if there are several isomeric structures of B_1H^+ , the observed proton transfer reaction may involve a rearrangement of the B_1 or B_1H^+ species in the reaction complex to a more stable structure, so that the observed "bracketing" does not necessarily reflect the thermochemistry of a straightforward or even unique proton transfer reaction.

2.5. Other Sources of Proton Affinity/Gas Basicity Data

The compilation includes a few pieces of data originating from measurements which do not fall into any of the above categories. Quantitative information about relative proton affinities has been obtained through the determination of the energy barrier associated with endothermic proton transfer reactions through an Arrhenius treatment of the temperature dependence of the rate constants. Also, determinations of the equilibrium constants of processes such as:

$$B + AH^+ \rightleftharpoons ABH^+ \tag{10}$$

lead to values of heats of formation of the condensation or association ions, ABH⁺, if the heats of formation of AH⁺ and B are known; this information can then be used to derive the proton affinity of AB.

Qualitative information about relative proton affinities has been derived from observations of the modes of dissociation of $(ABH)^+$ ions into $(AH^+ + B)$ or $(BH^+ + A)$; a semi-quantitative relationship between the ratios of the two product ions and relative proton affinities has been reported 10 .

3. Description of the Evaluation

3.1. Thermodynamic Ladders

In the compilation of gas phase basicity and proton affinity data presented here, the available thermodynamic ladders giving relative gas phase basicities of series of compounds were made the initial basis for the evaluation, using consistency between sets of data from different laboratories and matching of the intervals of the scale with those predicted from widely separated primary standards as the criteria for judgement. To minimize problems due to uncertainties in the temperature at which measurements were made, the thermodynamic ladders were related to as many local standards over the course of the scale as possible. Results obtained from "bracketing" experiments were then related to the evaluated scale. A specific example of this procedure and the mode of presentation in Table 1 is given in Sec. 5.1. Finally, the experimentallydetermined scale of relative gas basicities was translated

into a scale of proton affinities by evaluating the entropy change associated with reaction 1.

3.1.1. Entropy Changes

For most polyatomic species, the entropy change of the half reaction $(M \to MH^+)$ was estimated by making the usual simplifying assumption¹⁻⁷ that this quantity can be adequately approximated by the expression:

$$\Delta S = R \ln[\sigma(M)/\sigma(MH^{+})]$$
 (11)

(where $\sigma(M)$ and $\sigma(MH^+)$ are the rotational symmetry numbers of M and MH⁺). The use of this expression is obviously inexact, in some cases enough so that a more exact calculation of the entropy change from the complete partition function is warranted. This is especially true for species in which internal rotations are lost or gained upon protonation, or in which there is a significant difference in the moments of inertia of the protonated and unprotonated species. In such cases, the entropy change was calculated from the complete partition function. In all cases for which experimental entropy change determinations of reaction 2 have been made, the experimental results were made the basis of the evaluation of the relevant entropy changes.

3.1.2. Temperature

Several of the data sets constituting the backbone thermodynamic ladder for Table 1 are very extensive, covering energy ranges of up to 300 kJ/mol (72 kcal/mol). Uncertainties of only a few percent in the operating temperature used in the original experiments may translate into differences of tens of kJ (or several kcal) in the absolute values assigned to gas basicities or proton affinities when applied across such an energy range relative to a single absolute standard. One must be particularly aware of this problem in dealing with data sets from ion cyclotron resonance experiments originally reported to have been carried out at "300 K". More recent work has shown that unless special precautions are taken, the operating temperature of an ICR cell at "ambient" temperature is higher than 300 K by 20 to 50 degrees. In such cases, the free energy changes originally calculated from the observed equilibrium constant (Eq. 3) have been corrected by multiplying by T(corrected)/300. Where such changes in the original data have been made, the magnitude of the correction factor is indicated in the notes under the literature citation. A comparison of data from these sets with analogous results from experiments in which the temperature was measured generally confirms that the magnitudes of these corrections are at least approximately correct. (It is obvious that for the data sets considered here, the distinction between "300 K" and the temperature corresponding to STP conditions, 298.15 K, is essentially irrelevant; the two numbers, 298 and 300, will be used in this discussion and in the tables essentially interchangably, depending mainly on which number was used in a particular paper.)

3.2.1. Ammonia

(Sec. 5.2.1).

3.2. Assignment of Absolute Values to the Scale: Reference Standards

Although absolute values have been assigned to the relative proton affinity scale here, these values can be considered really well-established only for the lower part of the scale (i.e., for proton affinities lower than about 750 kJ/mol or 180 kcal/mol), which is based on numerous primary comparison standards. The upper part of the scale is based primarily on the proton affinity of isobutene, which in turn depends on the heat of formation of the tert-butyl ion; other standards, which appear to give a consistent assignment to the scale, are ketene and ammonia. However, none of these standards can be considered to have a firmly-enough established proton affinity that it can be stated with certainty that future variations in absolute assignments will not occur.

To minimize problems due to uncertainties in the temperature, long thermodynamic ladders have been related to as many local standards over the course of the scale as possible. In such cases, the same data are listed twice in Table 1, once as originally reported and a second time in evaluated form, as described in more detail in Sec. 5.1. Similarly, in the single thermodynamic ladder available for the low end of the scale $(H_2 \text{ to } C_2H_6)$, in agreement with an evaluation of these data from the laboratory where the original work was done¹¹, we have chosen to relate segments of the scale to well–established local standards, rather than accept the originally–reported relationships between widely separated portions of the scale.

In the following section, we present details of the evaluations of the proton affinities of the compounds which served as the primary standards for assigning absolute values to the gas basicity and proton affinity scales. In this process, for all but the lowest part of the scale (H₂ to C₂H₆), the greatest weight was given to the proton affinities of ethylene, propylene, and isobutene. The heats of formation of C₂H₅⁺ and CH₃C⁺HCH₃ have been carefully studied in numerous laboratories, and are now rather well established. The heat of formation of the tert-butyl ion is somewhat less well established, but recent evaluations of this heat of formation give a proton affinity value for isobutene which is in fairly good agreement with information from other comparison standards in the immediate vicinity in the scale (ketene and ammonia). The relevant heats of formation, and evaluated 300 K proton affinity values of the standard compounds are summarized in Sec. 3.3. It should be noted that the heats of formation of positive ions cited here are given using the so-called "stationary electron convention" commonly used by For reasons which appear to have more to do with tradition than with science, the scale of gas phase proton affinities is often related to the proton affinity of ammonia as a standard. This proton affinity is defined by the reaction:

mass spectrometrists¹², and described in detail below

$$NH_3 + H^+ \rightarrow NH_4^+$$
. (12)

An experimental determination of the heat of formation of NH_4^+ based on its appearance energy from a $(NH_3)_2$ dimer¹³:

$$(NH_3)_2 \rightarrow NH_4^+ + NH_2^- + e.$$
 (13)

leads to a value of the proton affinity of ammonia of 846.3 kJ/mol (202.3 kcal/mol) at 0 K, and assuming that all rotational degrees of freedom are excited and that no vibrational degrees of freedom are excited at 298 K, this corresponds to a value of 852 kJ/mol (203.6 kcal/mol) for the proton affinity of ammonia at 298 K. Although the authors of that paper cite error limits of ± 5 kJ/mol (1.3 kcal/mol) for this value of the proton affinity, an examination of the error limits associated with the appearance energy measurement (±2 kJ/mol or 0.5 kcal/mol), the heat of formation of NH₂ (±12 kJ/mol or 3 kcal/mol) and the assumed well depth for formation of the $(NH_3)_2$ dimer $(\pm 4 \text{ kJ/mol or } 1)$ kcal/mol) leads one to assign error limits of at least ±13 kJ/mol (3.2 kcal/mol) to this value. Substitution of the dimer well depth used in reference 13 (-14.6 kJ/mol or 3.5 kcal/mol) with a value from a more recent ab initio calculation¹⁴ (-7.9 kJ/mol or 1.9 kcal/mol) leads to a modification of the proton affinity derived from this experimental result to a value of 845 kJ/mol (202.0 kcal/mol). More direct ab initio calculations of the proton affinity of ammonia 15,16 lead to values of 858 kJ/mol (205.0 kcal/mol) and 879 kJ/mol (210 kcal/mol), respectively.

In fact, the exact value for the proton affinity of ammonia is of less importance than it is usually accorded, since the position of ammonia in the scale of relative gas phase basicities is not well established. In fact results from various laboratories show considerable variation in measurements involving this molecule. For instance, relative to the proton affinity of isobutene, one would assign values for the proton affinity of ammonia ranging from 851 to 858 kJ/mol (203.5 to 205.0 kcal/mol), depending on which set of measurements one selected. (Although this range is not really large in terms of absolute quantities, the reproducibility of measurements of proton transfer equilibrium constants often allows one to assign error limits of <0.4 kJ/mol (0.1 kcal/mol) to any particular directly-measured

interval in the free energy scale. The apparently poor quality of the measurements involving this compound is easy to rationalize, since ammonia tends to adsorb on surfaces making accurate pressure measurements difficult.) The selected value for the proton affinity of ammonia, 853.5 kJ/mol (204.0 kcal/mol), which is in good agreement with the experimental determination 13 and one theoretical calculation¹⁵, is an intermediate value taken from the several thermochemical ladders which have been reported relating the proton affinity of ammonia to that of the primary standard isobutene. Because the agreement between the different thermochemical scales is generally good except for the position of ammonia, the exact value of the proton affinity of ammonia was given little weight in carrying out the evaluation reported here. This proton affinity was treated as a secondary standard, and, in fact, was allowed to "float" relative to the rest of the scale in evaluating different data sets, in order to maintain the overall agreement between the different experimentally-determined thermodynamic ladders.

The entropy change associated with the half reaction (NH₃ \rightarrow NH₄⁺) is -7.5 J/mol K (-1.8 cal/mol K), calculated from the complete partition function. This leads to a value of 818 kJ/mol (195.6 kcal/mol) for the 300 K gas phase basicity.

3.2.2. Ketene

The proton affinity is defined by the reaction:

$$CH_2 = C = O + H^+ \rightarrow CH_3CO^+.$$
 (14)

A recent determination¹⁷ of the heat of formation of CH₃CO⁺ at 298 K led to a value of 657 kJ/mol (157 kcal/mol). Accepting a value of -47.7 kJ/mol (-11.4 kcal/mol) for the heat of formation of ketene¹⁸, this would correspond to a proton affinity of 825.5 kJ/mol (197.3 kcal/mol). A re-evaluation of the data of that reference by the present authors gives a heat of formation for CH₃CO⁺ of 653 kJ/mol (156 kcal/mol) which corresponds to a proton affinity of 830 kJ/mol (198.3 kcal/mol). However, from the onset of 9.6035 eV determined¹⁹ for the occurrence of the reaction:

$$CH_2CO^+ + CH_2CO \rightarrow C_2H_4^+ + 2 CO,$$
 (15)

one calculates a slightly less negative heat of formation for CH₂CO, -36.4 kJ/mol (-8.7 kcal/mol), which would correspond to a proton affinity¹⁷ of 832 kJ/mol (198.8 kcal/mol), or 836 kJ/mol (199.8 kcal/mol), respectively.

The position of ketene in the thermochemical ladder of proton affinities has been established ^{12,20}, and relative to the value chosen above for isobutene, leads to a proton affinity for ketene of 828 kJ/mol (198.0 kcal/mol).

3.2.3. Isobutene

The proton affinity of isobutene is defined by the reaction:

$$iso-C_4H_8 + H^+ \rightarrow tert-C_4H_9^+$$
. (16)

The heat of formation of the tert-C₄H₉⁺ ion is less well established than those of the ethyl and sec-propyl ions discussed below. A recent analysis of the 298 K heat of formation of this ion as derived from appearance energy measurements led to a value of <695±3 kJ/mol $(166.2\pm0.8 \text{ kcal/mol})^{21}$. A value of 697 kJ/mol (166.5) kcal/mol) is obtained for this heat of formation taking a value of 50.2±4 kJ/mol (12.0±1. kcal/mol) for the heat of formation of the tert-butyl radical²² and a value of 6.7 eV for the ionization potential²³. However, the latter value can not be considered well-established without additional corroborating evidence, since experimentally-determined values for the heat of formation of the radical ranging from 44 to 35 kJ/mol (10.5 to 8.4 kcal/mol)²⁴⁻²⁷ have also been reported, and a value of 6.58 eV has been reported for the ionization potential²⁸. The corroborating evidence is derived from measurements²⁹⁻³¹ of the equilibrium constant of the reaction:

$$C_6H_5CH_2^+ + (CH_3)_5CCl \Leftrightarrow C_6H_5CH_2Cl + tert-C_4H_9^+$$
 (17)

which give a value of -5.4 kJ/mol (-1.3 kcal/mol) for the enthalpy change at 300 K; from these data the heat of formation of the tert-butyl ion would be estimated to be 694 kJ/mol (165.8 kcal/mol) accepting a value of 899 kJ/mol (214.8 kcal/mol) for the heat of formation of the benzyl ion. This is based on a value for the heat of formation of the benzyl radical of 204 kJ/mol (48.8 kcal/mol)^{22,32} and an ionization potential of the radical of 7.20 eV³³. (The heat of formation of (CH₃)₃CCl is taken as -182 kJ/mol or -43.5 kcal/mol³⁴; the heat of formation of C₆H₃CH₂Cl is derived from a liquid phase heat of formation³⁴ and a heat of vaporization³⁵ taken to be 4.1 kcal/mol.) Based on this result, the proton affinity of isobutene is 820 kJ/mol (195.9 kcal/mol).

Taking into account changes in external rotational symmetry numbers, the gain of an internal rotation upon protonation, and the change in the moments of inertia, the entropy change for the half reaction

$$(i-C_4H_8 \rightarrow tert-C_4H_9^+)$$

is about +3 J/mol K $(+0.7 \text{ cal/mol K})^{36}$. This leads to a value of 784 kJ/mol (187.3 cal/mol) for the 298 K gas phase basicity.

3.2.4. Propylene

The proton affinity of propylene is defined by the reaction:

$$CH_3CH = CH_2 + H^+ \rightarrow sec - C_3H_7^+.$$
 (18)

The heat of formation of the sec- $C_3H_7^+$ ion at 298 K has been determined to be 798 kJ/mol (190.8 kcal/mol)³⁷, 799 kJ/mol (190.9 kcal/mol)³⁸, or 802.5 kJ/mol (191.8 kcal/mol)²¹. Taking a value of 799 kJ/mol (191.0 kcal/mol) for this heat of formation, the proton affinity of propylene is 751 kJ/mol (179.5 kcal/mol).

A calculation of the rotational entropy change associated with changes in the moments of inertia and rotational symmetry numbers for the half reaction $(CH_3CH=CH_2 \rightarrow sec-C_3H_7^+)$ leads to a value of -3.8 J/mol K (-0.9 cal/mol K); this estimate fails to take into account the predicted positive entropy change brought about by the loss of the double bond. (The methyl group in the ion can be taken to be essentially a free rotor³⁹.) In the evaluation of the gas basicity of propylene, it has been assumed that the entropy change of this half reaction is close to zero, as discussed before³⁶. On this basis, the gas basicity of propylene is taken to be 718 kJ/mol (171.7 kcal/mol).

The gas basicity of propylene has been related through thermochemical ladders to several of the other comparison standards listed here. If one estimates the proton affinity through such data using ethylene as the primary standard for the proton affinity scale (i.e. using the data from reference 40 for the interval C₂H₄-H₂O and from reference 41 for the interval H₂O-C₃H₆), one obtains a value of 752 kJ/mol (179.7 kcal/mol) for the proton affinity of propylene, in excellent agreement with the conclusion presented above. On the other hand, the interval in the thermochemical ladder between isobutene and propylene appears to be somewhat constricted, an effect which may result from the fact that small inaccuracies in temperature measurement may cause noticable errors in such a scale if the scale covers a wide energy range, as discussed above, or may possibly reflect uncertainties in the heat of formation of the tert-butyl ion, also discussed above.

3.2.5. Formaldehyde

Approximately following the recent discussion of Collyer and McMahon⁴⁰, an analysis of the proton affinity of formaldehyde is given. Although this compound was not used as a primary reference standard in the evaluation of the thermochemical ladder, this proton affinity provides an additional reference point to verify the assignment of absolute values to the proton affinity scale. Values for the heat of formation of CH₂OH⁺ derived from the appearance energy of this ion from CH₃OH range from 711 kJ/mol (170.0 kcal/mol) to 714 kJ/mol (170.7 kcal/mol)⁴²⁻⁴⁴ corresponding to proton affinity values of 711-715 kJ/mol (170-171 kcal/mol). Since the proton affinity of formaldehyde is 22 kJ/mol (5.2 kcal/mol) above that of water⁴⁵, the value predicted from the evaluated proton affinity scale is 718 kJ/mol (171.7 kcal/mol), in

reasonably good agreement with that obtained from threshold measurements.

3.2.6. Water

A value for the heat of formation of H_3O^+ has been obtained from a measurement of the appearance energy of this ion from a hydrogen-bonded dimer⁴⁶:

$$(H_2O)_2 \rightarrow H_3O^+ + OH + e.$$
 (19)

From this experiment, one obtains a value for the proton affinity of H2O of 694 kJ/mol (165.8 kcal/mol) at 0 K, and assuming that all rotational degrees of freedom are excited and that no vibrational degrees of freedom are excited at 298 K, this corresponds to a value of 697 kJ/mol (166.5 kcal/mol) for the proton affinity of water at 298 K. The error limits cited by the authors for this proton affinity are ± 7.5 kJ/mol (1.8) kcal/mol), with the major uncertainty being the well depth for formation of the water dimer. A recent stateof-the-art ab initio calculation⁴⁷, which included corrections for the change in the zero point energy upon protonation, correction to 298 K, and vibrational mode corrections, verifies the well depth of -17 kJ/mol (-4 kcal/mol) assumed in the interpretation of those results; these authors also calculate a value for the proton affinity of water of 689 kJ/mol (164.8 kcal/mol), in good agreement with the experimental result.

Recent equilibrium studies 40,48 have tied the proton affinity of H₂O to that of ethylene. The experimental results from those studies indicate that the Gibbs free energy change of the reaction:

$$C_2H_5^+ + H_2O \rightarrow H_3O^+ + C_2H_4$$
 (20)

is -7.5 kJ/mol (-1.8 kcal/mol)⁴⁸ or -14 kJ/mol (-3.4 kcal/mol)⁴⁰. In one of these studies⁴⁸, the direct measurement of the free energy change of reaction 20 was complicated by clustering of H₃O⁺ to C₂H₄, and therefore, more weight is given to the latter result, which is based on a low pressure measurement of a thermodynamic ladder linking the gas basicities of the two compounds through several interlocking steps. Accepting a value for the proton affinity of C₂H₄ of 680 kJ/mol (162.6 kcal/mol) (see Discussion below) this result leads to a proton affinity of water of 697 kJ/mol (166.7 kcal/mol) if one calculates the entropy change for reaction 20 taking into account only the changes in the rotational symmetry numbers of the reactants and products; a more complete calculation of the entropy change for this reaction leads to a value of 696 kJ/mol (166.3 kcal/mol). Both estimates of the entropy change give proton affinity values which are in agreement with the value derived from the threshold determination of the heat of formation of H₃O⁺⁴⁶ and with the ab initio calculation⁴⁷.

The entropy change associated with the half

reaction ($H_2O \rightarrow H_3O^+$) is 4.3 J/mol K (1.03 cal/mol K)⁴⁹. The evaluated proton affinity of water, 697 kJ/mol (166.5 kcal/mol), thus corresponds to a gas phase basicity of 665 kJ/mol (159.0 kcal/mol).

3.2.7. Ethylene

The proton affinity of ethylene is defined by the reaction:

$$C_2H_4 + H^+ \rightarrow C_2H_5^+$$
. (21)

The heat of formation of $C_2H_5^+$ at 298 K has been determined from photoion-photoelectron coincidence experiments to be 901±4 kJ/mol (215.3±1.0 kcal/mol)³⁷, or 903±2 kJ/mol (215.9±0.5 kcal/mol)³⁸, and from photoionization mass spectrometric appearance potentials, to be 904±2 kJ/mol (216.0±0.5 kcal/mol)²¹. In agreement with recent analyses of these data^{40.48}, we take an average value of 902 kJ/mol (215.6 kcal/mol) for this heat of formation, and on that basis, take a value for the proton affinity of ethylene of 680 kJ/mol (162.6 kcal/mol).

Assuming the $C_2H_5^+$ ion to have a non-classical bridged structure of $C_{2\nu}$ symmetry¹⁶ (which has been calculated⁵⁰ to be 21.6 kJ/mol or 5.2 kcal/mol lower in energy than the classical structure), the entropy change calculated from the complete partition function for the half reaction ($C_2H_4 \rightarrow C_2H_5^+$) is -10 J/mol K (-2.4 cal/mol K). The gas basicity of this compound is 651 kJ/mol (155.6 kcal/mol).

3.2.8. Carbon monoxide

The heat of formation of HCO⁺ derived from appearance potential measurements in formaldehyde is 824 kJ/mol (196.9 kcal/mol) corresponding to a proton affinity of 596 kJ/mol (142.4 kcal/mol)51, or 827 kJ/mol (197.6 kcal/mol) corresponding to a proton affinity of 593 kJ/mol (141.7 kcal/mol)⁵². The selected value is the average of these two and some other values from appearance potential measurements⁵³, or 594 kJ/mol (141.9 kcal/mol). Accepting a recent recommended value for the heat of formation of HCO^{27} of 37 ± 5 kJ/mol (8.9±1.2 kcal/mol), an ionization potential determination⁵³ for this radical of 8.27±0.01 eV leads to a heat of formation of the HCO+ ion of 835 kJ/mol (199.6 kcal/mol), and a corresponding proton affinity of 584.5 ± 6 kJ/mol (139.7±1.4 kcal/mol), in good agreement with the values derived above.

Following the recommendation of Bohme et al. 11, the entropy change associated with the half reaction $(CO \rightarrow HCO^+)$ is taken as 3 J/mol K (0.8 cal/mol K).

3.2.9. Carbon dioxide

From the appearance potential of HCO_2^+ in formic acid (12.29 eV)⁵⁴, one can derive a heat of formation of the ion of 589 kJ/mol (140.8 kcal/mol), which corresponds to a proton affinity of 548 kJ/mol (130.9 kcal/mol).

Following the recommendation of Bohme et al. 11 , the entropy change associated with the half reaction (CO₂ \rightarrow HCO₂ $^+$) is taken as 19 J/mol K (4.5 cal/mol K).

3.2.10. Oxygen atom

The heat of formation of the OH^+ ion has been determined from its appearance potential in H_2O (18.115 \pm 0.008 eV) to be 1293 kJ/mol (308.96 kcal/mol)⁵⁵. A value for the ionization potential of the OH radical has been derived from appearance energy measurements in HOF to be 12.88 eV⁵⁶ in good agreement with the value of 13.01 eV⁵⁷ obtained from a direct experimental measurement. These values correspond to heats of formation of the OH⁺ ion of 1281.5 or 1294 kJ/mol (306.3 or 309.3 kcal/mol), respectively. Accepting the value of 1293 kJ/mol (308.96 kcal/mol)⁵⁵, the proton affinity of the O atom is taken as 487 kJ/mol (116.3 kcal/mol).

Bohme et al.¹¹ recommend a value of 27 J/mol K (6.5 cal/mol K) for the entropy change associated with the half reaction (O \rightarrow OH⁺). On this basis, the gas basicity of the O atom at 298 K is taken as 463 kJ/mol (110.7 kcal/mol).

3.2.11. Molecular Oxygen

The ionization potential of O_2H has been determined to be $11.35\pm0.01~eV^{58}$. Accepting values for the heat of formation of O_2H of 13 kJ/mol (3.2 kcal/mol) at 0 K, or 10.5 kJ/mol (2.5 kcal/mol) at 298 K⁵⁹, one obtains a value for the heat of formation of O_2H^+ ion of 1108 or 1098 kJ/mol (264.9 or 262.4 kcal/mol) at 0 or 298 K, respectively, leading to a value for the proton affinity of oxygen of 420 kJ/mol (100.5 kcal/mol). This result is in good agreement with a value of 422 kJ/mol (100.9 kcal/mol) which has been cited⁶⁰ for this proton affinity, based on the appearance potential of O_2H^+ in H_2O_2 .

The entropy change associated with the half reaction $(O_2 \rightarrow O_2 H^+)$ is taken to be 27 J/mol K (6.5 cal/mol K)¹¹. The gas basicity of O_2 is taken as 397 kJ/mol (95.0 kcal/mol).

3.3. Summary of Thermochemical Data on Comparison Standards for Proton Affinity Scale

Standard(M)	$\Delta_t H(M)$	(298 K)		$\Delta_{\rm r}H(M)$	H+)b		Proton Affi	inity ^c
	kcal/mol	kJ/mol	_	kcal/mol	kJ/mol		kcal/mol	kJ/mol
NH,	-11.02	-46.11	59	151.0	632.	13	203.6	852.
- ·• ,				153.6	643.	13,14	202.0	845.
	Ab in	itio calcula	ition	15			205.0	858.
	Ab in	itio calcula	ition	16			210.0	879.
							204.0±3*	853.5±12°
$CH_2=C=O$	≟11.4	-47.7	18	156.0	653.	17	198.3	830.
	-8.7	-36.4	19				198.8	832.
	From	thermoch	emical l	adder, relativ	ve to isobu	itene:	198.0±2*	828.±8*
$(CH_3)_2C = CH$	I ₂ -4.04	-16.9	34	≤166.2	≤695 .	21	≥195.5	≽818.
				166.5	697.	22,23	195.2	817.
				165.8	694.	22,31,32,33	195.9±1.5*	819.5±6*
CH ₃ CH=CH	I ₂ 4.83	20.2	34	190.8	798.	37	179.7	752.
,	-			190.9	799.	38	179.6	752.
				191.8	802.5	21	178.7	748.
	From	thermoch	emical l	ladder, relati	ve to ethyl	lene:	179.7	752.
				191.0	799.		179.5±0.8*	751.±3*
H ₂ O	Ab in	itio calcul	ation	47			164.8	689.
	From	thermoch		ladder, relati	ve to ethy		166.3	695.8
	-57.8	-241.8	59	141.4	592.	46	166.5±2*	697.±8*
$CH_2 = CH_2$	12.48	52.2	34	215.3	901	37	162.9	681.5
				215.9	903	38	162.3	679.
				215.6	902		162.6±1*	680.±4*
СО	-26.4	110.5	59	196.9	824.	51	142.4	596.
				197.6	827.	52	141.7	593.
				199.6	835.	27,53	139.7	584.5
							141.9±2*	594.±8*
CO ₂	-94.05	-393.5	59	140.8	589.	54	130.9*	548.*
0				306.3	1281.5	56	118.9	498.
				309.3	1294.	57	115.9	485.
	59.56	249.2	54	308.96	1293.	55	116.3±1*	491.±4*
O_2	0.00	0.00		262.4	1098.	58,59	100.5	420.
-				264.8	1108.	60	100.9±0.5*	422.±2*

^{*}Selected value.

^aSee Sec. 3.2 for detailed discussion and error limits.

^bHeats of formation using "stationary electron convention" (described in Sec. 5.2.1)

^{°298} K heat of formation of H⁺ (Eq. 1) in "stationary electron convention" = 365.7 kcal/mol, 1530.0 kJ/mol.

4. Experimental Error Limits

As shown in Sec. 3.3, the heats of formation of the MH+ ions used for establishing absolute values for the proton affinity scale have error limits which are larger than ± 4 kJ/mol (± 1 kcal/mol), sometimes considerably larger (e.g., NH₄+). In general, absolute values assigned to the proton affinities of species determined through equilibrium measurements can be considered to be known to within ± 8 kJ/mol (± 2 kcal/mol) if the proton affinity lies in the region of the scale between water and ammonia (i.e. if the proton affinity is in the range 700-850 kJ/mol). In the region of the scale below water (proton affinities less than about 700 kJ/mol), the absolute values of proton affinities can be assumed to be known to within 4-6 kJ/mol for species determined through equilibrium measurements. In the region of the scale above ammonia (proton affinities greater than 850 kJ/mol), the absence of reliable absolute standards makes it impossible to check on the reliability of assigned proton affinity values. In particular, if the temperatures at which measurements were made were not well known, the thermochemical ladders generated from equilibrium constant determinations could be too long or too short, causing proton affinity values at the top end of the scale to vary considerably from their correct absolute values. Some confidence in the assigned values is gained from the general agreement observed in the reported thermochemical ladders generated in different laboratories. However, the lack of reference proton affinities in the upper part of the scale necessitates the assignment of relatively large error limits in this region, ± 16 kJ/mol. Throughout the scale, relative values derived from equilibrium constant measurements can be considered to be known to within ± 1 kJ/mol (0.2 kcal/mol) or less when ΔG is small ($\leq 4-6$ kJ/mol). Since the experimentally measured free energy changes are given in Table 1, users of this compilation can identify for themselves species for which larger or smaller error limits on relative gas basicities are warranted. Proton affinities derived from bracketing measurements have error limits which are determined by the size of the bracket (given under the appropriate literature reference).

In Table 2, the values given for the heats of formation of the positive ions include, of course, the error limits associated with the assignment of absolute values to the proton affinity scale (described above in Sec. 3.2) as well as the error limits associated with the heat of formation of the neutral molecule.

Nearly all of the data compiled here were originally reported in units of kcal/mol; the cited values in these units are given to tenths of a kcal/mol, in order to preserve the originally-reported information about relative ordering. On the other hand, in order to emphasize the large absolute uncertainties in cited proton affinity values, the columns giving data in kJ/mol show values only to within the nearest kilojoule per mole.

5. Explanation of the Tables

5.1. Explanation of Table 1

Table 1 presents a summary of the data from the literature, an evaluation of those data, and evaluated values for the gas basicities at 300 K and the proton affinities, in units of both kcal/mol and kJ/mol (where one kcal/mol is defined as 4.184 kJ/mol). The data in Table 1 are presented in order of descending proton affinity. Data from proton transfer equilibrium measurements are given in considerable detail, with (as described below) reference bases and temperatures specifically noted in most cases. The bracketing experiments, denoted by (br), have been related to the evaluated thermodynamic ladders from equilibrium constant measurements. Details of bracketing and hydride transfer experiments are provided in annotations under the appropriate literature references, as is information about equilibrium measurements related to reference bases not included in the standard list given below in Sec. 5.1.1; these latter experiments are identified in Table 1 by the notation (Key) appearing in the column usually used to identify the reference base.

In order to understand the structure of Table 1 (as well as the thought processes which went into the evaluation) it is best to consider specific examples of data sets, and illustrate how they are presented in Table 1. Table A represents a small portion of an extensive set of data originally published in J. F. Wolf, R. H. Staley, I. Koppel, M. Taagepera, R. T. McIver, Jr., J. L. Beauchamp, and R. W. Taft, J. Am. Chem. Soc. 99, 5417 (1977) (denoted by 77WOL/STA in Table 1).

TABLE A.

	ΔG kcal/mol	Reference
NH ₃	0.0	77WOL/STA
CH ₃ COCH ₃	-7.2	77WOL/STA
iso-C ₄ H ₈	-8.6	77WOL/STA
H ₂ S	-27.8	77WOL/STA
H ₂ O	-31.4	77WOL/STA

In Table A, ΔG represents the free energy changes (in kcal/mol) derived for the process (MH⁺ + NH₃ → NH₄⁺ + M) from interlocking series of equilibrium constant determinations at a temperature assumed to be 300 K. As one can find in the comments under 77WOL/STA in the annotated references, the authors of this paper subsequently found that the operating temperature at which the original measurements were made was actually approximately 320 K, and therefore, from Eq. (3), the experimentally determined values of ΔG were increased by a factor of 320/300. These data then would appear in Table 1 as shown in Table B with the temperature-corrected values of ΔG (these are surrounded by parentheses) in the column labelled "Relative gas basicity, kcal/mol". The "Relative gas basicity" is the negative of the Gibbs free energy change associated with the reaction:

$$BH^+ + M \rightleftharpoons MH^+ + B(Ref)$$
 (22)

where B(Ref) is the reference base corresponding to the one- or two- alphabetic character denoter given in the list in Sec. 5.1.1.

TABLE B.

j	Reference base	Relative gas	Gas basicity	Reference
	base	basicity kcal/mol	kcal/mol	
NH ₃	A	(0.0)	195.6	77WOL/STA
CH ₃ COCH	I ₃ A	(-7.9)	187.9	77WOL/STA
iso-C ₄ H ₈	Α	(-9.2)	186.4	77WOL/STA
H ₂ S	Α	(-29.6)	167.0	77WOL/STA
H ₂ O	A	(-33.5)	163.1	77WOL/STA

The entry "A" in Table B in the column labelled "Reference base" identifies ammonia as the species to which the original authors referred their basicity data. The "Gas basicity" values displayed here next to the corresponding "Relative gas basicity" are taken relative to the absolute gas basicity of ammonia derived in Sec. 3.2.1 and obtained using the relative ΔG values cited here.

Since, as described in Secs. 3.2.3 and 3.2.6, the gas basicities of iso-C₄H₈ and water are taken to be, respectively, 187.3 and 159.0 kcal/mol, it appears that in this data set cumulative errors exist in the overall thermochemical ladder over the span of more than 30 kcal/mol. Therefore, the data from this paper are related to several local standards. In the example set shown here, iso-C₄H₈ and H₂O happen to be species for which well-established values for the gas basicity and proton affinity can be assigned (Sec. 3.2), and therefore, these are chosen as local standards. In Table 1, data from any given reference are always reproduced in their original form (or, as here, their original form corrected for temperature) in addition to appearing in their evaluated form (if the two differ); original thermochemical ladders have been preserved in the presentation so that users of the compilation can examine the information as it appeared in the literature and re-evaluate the data for themselves if future experimental results bring about changes in values assigned to particular reference gas basicities or proton affinities. Thus, any given piece of data from 77WOL/STA could appear twice, once as given above and once with the cited gas basicity value as derived in relation to the appropriate local standard. The example data would be given in Table 1 as shown in Table C.

TABLE C.

	rence ase	Relative gas basicity	Gas basic	ity Referenc
		kcal/mol	kcal/m	ol .
NH,	Α	(0.0)	195.6	77WOL/STA
	Η		196.6	
СН,СОСН,	Α	(-7.9)	187.9	77WOL/STA
	Н		188.9	
iso-C ₄ H ₈	Α	(-9.2)	186.4	77WOL/STA
	Н	(0.0)	187.3	
H ₂ S	A	(-29.6)	167.0	77WOL/STA
_	N		162.9	
Н₂О	A	(-33.5)	163.1	77WOL/STA
-	N	(0.0)	159.0	

In Table C (see the list in Sec. 5.1.1) the symbols H and N identify iso- C_4H_8 and H_2O as respective local

standards; the gas basicity values taken relative to these standards are shown in the appropriate column. In Table 1, when two entries appear together without a repetition of the "Reference" identifier, the second entry represents the same data item as the first but, as in the example given here, the "Gas basicity" in the second instance is that relative to a local standard not used by the original authors. In cases where such dual entries occur, only the second "evaluated" gas basicities were taken into account in the final evaluation of the gas basicity of the particular compound. The local standards used for particular data sets are identified in the list in Sec. 5.1.1 and also can be located in Table 1 by the appearance of the entry "(0.0)" in the "Relative gas basicity" column.

The evaluation of the gas basicity and proton affinity of a particular compound and its reconstruction from the entries in Table 1, can be illustrated by considering a single molecule from our example data set, H₂S. All the entries from Table 1 relating to H₂S are reproduced in Table D. However, for clarity of presentation we want the gas basicity values taken into account in the final evaluation to stand out and therefore, all the entries of "unevaluated" gas basicities (e.g. the basicity of H₂S relative to that of ammonia in the example given above) are here replaced by a row of dots.

TABLE D.

<i>T</i>	Reference	Relative gas	Gas basicity	Reference
K	base	basicity kcal/mol	kcal/mol	
H ₂ S		(0.0)	162.8	78FRE/HAR(2
340	Y		163.6	73HOP/BON
296	N	(4.6)	162.8	78TAN/MAC
298	N	(3.8)	102.6	
320	Α	(-29.6)		77WOL/STA
320	N	•	162.9	
		(3.9)	162.7	77MAU/FIE
550	N			79LAU
600	Α	(-31.8)	162.2	,,Dire
600	N		102.2	

In Table D, the absence of entries in the "Reference" column indicates that the particular experimental result comes from the reference cited immediately above; such a result has been related to a local standard (water, N, in this case) which is different from the comparison standard used by the original authors. In all such cases, it is the second entry which is taken into account in the final evaluation of the absolute gas basicity of the compound. Other entries shown here

(73HOP/BON, 78TAN/MAC, 77MAU/FIE) are clearly results derived from studies in which the authors related their experimentally-determined thermochemical ladders to water. The first entry, with a Y in

the "Reference base" column and (0.0) under "Relative gas basicity" shows that in the paper 78FRE/HAR(2), the authors have related the gas basicities of some other compound(s) to that of H_2S (symbol, Y); the gas basicity given opposite this entry is the evaluated value, 162.8 kcal/mol, derived from the five determinations relative to an H_2O standard.

A final example will illustrate how results from bracketing experiments are evaluated and listed in Table 1. In J. J. Solomon and R. F. Porter, J. Am. Chem. Soc. 94, 1443 (1972) (72SOL/POR) it was seen that H_3O^+ transfers a proton to B_5H_9 but H_3S^+ does not. Therefore, the gas basicity of B_5H_9 is assumed to lie between those of water and hydrogen sulfide. The entry for B_5H_9 is shown in Table E. The gas basicity given is the average of that of the two bracketing compounds; these are listed in the comments under the appropriate reference.

TABLE E

	T K	Reference base	Relative gas basicity	Gas basicity	Reference
			kcal/mol	kcal/mol	
ъп		(1-2)			72SOL/POR
B₅H,		(br)		161	

In many instances, investigators have determined proton transfer equilibrium constants of pairs which do not include any of the standards listed above in Secs. 3.2 and 3.3., nor even any of the more commonly-used secondary standards listed in Sec. 5.1.1. In such cases, the data have been tied in to the scale in the usual way by relating to evaluated thermochemical ladders, and the identities of the particular reference compounds are given in comments under the appropriate reference at the end of Table 1. Such cases are identified by the designation (Key) appearing in the "Reference base" column.

In some cases, "proton affinities" have been reported in the literature without any information about the details of the experiment leading to the cited value; such data are usually reported here as they originally appeared since evaluation is impossible. Unevaluated data are denoted by a double asterisk (**). Other papers have presented revisions by original authors of data published earlier; in such cases the details of the original experiments are available, but the nature of the revisions are not; these data also have not been evaluated, and are denoted by a single asterisk (*).

The entries in the column labelled "Gas basicity" are actual gas phase basicities only for measurements made at temperatures close to 300 K. The gas basicities listed for experiments at higher temperatures have been normalized to those at 300 K in order to make

intercomparison easier; that is, in the defining reaction, that part of the term $T\Delta S$ which is associated with the proton is taken as 32.6 kJ/mol (7.8 kcal/mol)⁶¹ in all cases, so that actual differences in the free energy change of the defining reaction due to entropy changes associated with the half reaction (M \rightarrow MH⁺) may be discerned.

Literature references, identified by the eight-character identifier at the end of a data-containing line, are given at the end of the Table 1, sorted alphabetically according to the characters appearing in the identifying tag. The individual references contain annotations giving any special remarks pertaining to the particular paper.

5.1.1. Explanation of Symbols Used in Table 1

Symbol used in Table 1	Reference base	gas bas	uated icity	Evaluat proton affir	
		kcal/mol	kJ/mol	kcal/mol	kJ/mol
A	NH ₃	195.6	818.	204.0	853.5
·B	CH ₃ NH ₂	205.7	861.	214.1	896.
C	$n-C_3H_7NH_2$	210.1	879.	217.9	912.
D	Pyridine	213.1	892.	220.8	924.
E	(CH ₃) ₃ N	217.3	909.	225.1	942.
F	$C_6H_5NH_2$	202.5	847.	209.5	876.5
G	$C_2H_5NH_2$	208.5	872.	217.0	908.
H	$(CH_3)_2C = CH_2$	187.3	784.	195.9	820.
I	$C_6H_5N(CH_3)_2$	215.4	901.	223.4	935.
J	C_6H_6	174.6	730.5	181.3	. 758.5
K	C_2H_4	155.6	651.	162.6	680.
L	$CH_2(CN)_2$	167.4	700.	175.6	735.
M	H ₂ CO	164.3	687.	171.7	718.
N	H ₂ O	159.0	665.	166.5	697.
О	0	110.7	463.	116.3	487.
Oʻ	O_2	95.0	397.	100.9	422.
P	$(C_2H_5)_2O$	192.4	805.	200.2	838.
Q	HCO ₂ C ₂ H ₅	185.3	775.	193.1	808.
R	1,2-C ₆ H ₄ (CH ₁) ₂	186.1	779.	193.3	809.
S	CO ₂	124.4	520.	130.9	548.
T	CH ₃ CHO	178.6	747.	186.6	781.
U	(CH ₃) ₂ CO	188.9	790.	196.7	823.
v	CH ₃ COOCH ₃	190.0	795.	197.8	828.
W	$C_6H_5CH_5$	182.0	761.	189.8	794.
X	CH3COOC3H5	192.9	807.	200.7	840.
Y	H ₂ S	162.8	681.	170.2	712.
\mathbf{Z}	CO	134.4	562.	141.9	593.
AA	$CH_1CH = CH_2$	171.7	718.	179.5	751.
BB	Η,	94.6	396.	101.3	424.
EE	$(CH_3)_3P$	219.3	917.5	227.1	950.
XX	$(n-C_3H_7)_2O$	194.5	814.	202.3	846.
ZZ	(CH ₃) ₆ C ₆	200.0	837.	207.3	867.

(Key) — Identity of reference base or other experimental details (in the case of hydride transfer equilibrium constant determinations, for instance) are given in a comment under the appropriate literature citation. (In the case of proton transfer equilibria, usually used for small data sets which were experimentally related to unusual reference bases.)

(br) — Bracketing result.

* — Asterisk appearing after gas basicity value indicates that original authors reevaluated the original data in a subsequent publication, but without giving

sufficient information for relating the reevaluation to the present scale. Data as cited are the reevaluated values of the authors.

** — Double asterisks appearing after gas basicity or proton affinity values indicate that insufficient information is available to evaluate the data. Proton affinity values are given as reported by the original authors, and are not necessarily internally consistent with the evaluated proton affinity scale.

RN — CAS Registry Number.

5.2. Explanation of Table 2

Table 2 presents the evaluations from Table 1 sorted according to the empirical formula of the appropriate compound. The empirical formulas are given at the beginning of each new data item enclosed in square brackets; component atoms are listed alphabetically, with no concessions to chemical meaning (except that lower case letters are given a lower priority than upper case letters), and the compounds are given simply according to an alphabetical ordering of these empirical formulas. Table 2 also lists the heat of formation at 298 K of the compound, and a 298 K heat of formation of the protonated molecule derived from the evaluated proton affinity, using the "stationary electron convention".

5.2.1. Conventions Used

As mentioned above, the heats of formation of protonated molecules given in Table 2 are given according to the so-called "stationary electron" convention¹². According to this convention, the integrated heat capacity of the electron in eqs. (5) and (6) is taken as zero at all temperatures, and the thermal energy of the electron is not taken into account in calculating the heat of formation of the ion at temperatures other than zero kelvin. Obviously, since ionic species occur on both sides of equation (1), the absolute value for the proton affinity does not change with the convention, but one must take care to use consistent data in calculating a proton affinity from ionic heats of formation. If the heats of formation of ions given here are to be used in conjunction with heats of formation of ions taken from a compilation of thermodynamic data (such as "The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units"59 or the "JANAF Thermochemical Tables"61) in which the electron is treated as a conventional chemical element, the 298 K values given here must be increased by 1.48 kcal/mol or 6.2 kJ/mol in order to achieve consistency. The existence of two different conventions does not matter for neutral species. For the defining eq. (1), the 298 K heat of formation of the proton using this convention is 1530.0 kJ/mol or 365.7 kcal/mol. Relevant heats of formation of reference ions used to standardize the scale were taken at 298 K in all cases where sufficient information was available that this was possible.

5.2.2. Heats of Formation of Neutral Molecules

Heats of formation of the neutral molecule, M, in eq. (1) are listed in Table 2. The experimental data in Table 1 lead to a value for the proton affinity of M, and if the heat of formation of M is known or, as described below, can be estimated, one can thereby obtain a value

for the heat of formation of the protonated molecule MH⁺. In a few cases, a reliable value for the heat c formation of MH⁺ was available from other sources, and the proton affinity determination led to a determination of the heat of formation of the neutral molecule or radical. No distinction is made between these cases in Table 2, but in the latter case, the cited reference will be to the paper describing the proton affinity determination.

Values for the heats of formation of neutral molecules were taken from the experimental literature wherever possible. If data for a particular compound could be obtained from an evaluated data compilation, this value was selected for inclusion. Such compilations included, for organic compounds:

(1) J. B. Pedley and J. Rylance, "Sussex-N. P. L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds," University of Sussex (1977)³⁴. The numerous data from this evaluated compilation of 300 K heats of formation of organic compounds are identified as [77PED/RYL]. Where condensed phase data from this reference have been used in conjunction with experimental or estimated heats of vaporization or sublimation, the source of the heat of formation is identified simply by an asterisk (*) in the first space of the reference identification.

and for inorganic compounds (in order of preference):

- (2) D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, "The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C₁ and C₂ Organic Substances in SI Units," J. Phys. Chem. Ref. Data, Vol. 11, Suppl. 2 (1982), hereafter referred to as 82/TN270 from the original publication of this compilation as a series of NBS Technical Notes called the 270-series⁵⁹.
- (3) (a) D. R. Stull and H. Prophet, "JANAF Thermochemical Tables," NSRDS-NBS 37 (1971); (b) M. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, "JANAF Thermochemical Tables, 1975 Supplement, J. Phys. Chem. Ref. Data 4, 1 (1975); (c) M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, J. Chem. Phys. Ref. Data 11, 695 (1982). Information from these sources is hereafter referred to as JANAF⁶¹.

The preferential use of these compilations as sources of experimental data recognizes that these data have been evaluated for internal consistency insofar as possible. Experimental information about heats of formation of compounds not included in these sources was obtained

from scientific articles presenting relevant thermochemical determinations; when more than one such article was available for a given piece of data, the most recent value was usually arbitrarily chosen in the possibly naive hope that improved instrumentation and compound purity, as well as a greater awareness of the problems inherent in particular measurements or of the thermochemistry of particular classes of compounds, should contribute to improved values. In such cases, it should be noted, the cited references are not always the primary references for the determination, but may represent a choice by a subsequent author. Heats of formation of deuterated or partially deuterated molecules were assumed to be the same as the heats of formation of the non-deuterated analogues. Also, gas phase heats of formation of racemic mixtures are the same as the heats of formation of the optically pure enantiomers.

Implicitly, in assigning gas phase heats of formation to the neutral species, the compounds are assumed to be ideal gases at STP. Few of the species are, in fact, gases under these conditions - most are liquids or solids. Numerous methods exist for measuring and interpreting experimental heats of sublimation $[\Delta H(\text{solid} \rightarrow \text{gas})]$ and of vaporization $[\Delta H(\text{liquid} \rightarrow$ gas)], and, so need not be discussed here. Where available, such measurements were used to translate condensed phase data into gas phase information. However, such measurements do not exist for many compounds of interest here, either because of lack of adequate volatility, purity, or thermal stability, or even, seemingly because of a lack of interest in the species in the gas phase. Estimation methods for heats of vaporization, and occasionally sublimation, have been described in the literature. Some require other experimental data (e.g., critical constants), while others are limited to well-defined, however large, classes of compounds. Some of these methods have been used to generate values of gas phase molecular heats of formation from corresponding liquid or solid phase data; although such heats of formation are based on an estimation of one parameter, comparisons indicate that the resulting gas phase data are usually within 4 kJ/mol (l kcal/mol) of accepted values, at least for heats of vaporization. Therefore, these entries are not labelled "Est" for "Estimate" (see below), but are rather identified by a two-part reference, the first segment giving the source of the liquid or solid phase heat of formation of the compound (abbreviated to an asterisk (*) when that source is the often-referred to [77PED/RYL]), and the second segment, listing a reference describing the technique of determining the heat of vaporization or sublimation.

Heats of formation of compounds for which no experimental data were available were estimated, and are labelled "Est". Several estimation approaches were utilized. Only brief descriptions of these will be given here; a detailed discussion will be presented elsewhere⁶².

One approach utilizes experimental information

about isomerization processes for the formation of two or more isomeric species in a particular reaction. The assumption is made that $\Delta \Delta_r H = \Delta \Delta_r G$ for a pair of isomers (ΔS is assumed negligible) in the experimentally observed process, so that a heat of formation of an unknown species can be predicted from thermochemical information about isomeric molecules. This approach, which is not well characterized and so is less trustworthy than other approaches used here, utilizes various types of information including direct equilibration studies on isomers and the more casual observation that two isomers are formed in comparable quantities in a particular process, and so have comparable Gibbs free energies and enthalpies of formation.

A related approach to estimation is based on the assumption that $\Delta \Delta_f H$ can be equated with ΔE_{tot} for two isomers, where $\Delta E_{\rm tot}$ is the total energy of the molecule calculated quantum chemically. For this assumption, as well as all other estimation approaches employing quantum chemical studies, only ab initio calculations were considered as opposed to any of the plethora of semi-empirical studies at a wide variety of levels and approximations to the correct Hamiltonian and wavefunction. In all cases, care was taken to compare isomeric species with the same basis set and degree of geometry optimization. Built into this last assumption that $\Delta \Delta_f H = \Delta E_{tot}$ are the requirements that the zero point energy and enthalpy function $H^{\circ}-H_{0}^{\circ}$ are essentially equal for an arbitrary pair of isomers, and that conformational isomerism and relative energies hardly affect heats of formation. None of these assumptions is rigorously true, but experience indicates that they represent a good first guess as to molecular energetics.

There remain three related approaches which were employed to estimate heats of formation of molecules here. The first and best characterized is Benson's "group increment" approach^{63,64} in which the molecule of interest is defined as a collection of groups, and a "group", in turn, is defined as a polyvalent atom (ligancy ≥ 2) with all its ligands in a molecule. The heat of formation of the molecule is obtained by summing statistically-determined contributions from the heats of formation of the various "groups", and correcting for various higher order interaction and other "correction" terms. These corrections include such things as the presence of gauche configurations in substituted alkanes, and the presence of heterocyclic and/or non-six membered rings.

A related approach consists of formulating the molecule of interest as a substituted derivative of a well-characterized species. The unknown heat of formation is taken to be the sum of the known heat of formation and a suitable correction term associated with the exchange of the substituent and parent components. For example, the heat of formation of an arbitrary aliphatic azoxy compound may be determined⁶⁵ from the heat of formation of the related (E)-olefin by:

$$\Delta_{\rm f}H({\rm R-NN(O)-R'}) = \Delta_{\rm f}H({\rm R-CH=CH-R'}) + 14.6 \text{ kcal/mol},$$
 (23)

where the 14.6 kcal/mol for the $[\Delta_t H(-NN(O)-) - \Delta_t H(-CH=CH-)]$ correction term was obtained by averaging the difference of the heats of formation of R-NN(O)-R' and (E)R-CH=CH-R' for R=R'=tert-butyl and n-propyl.

The final estimation approach, termed "macro-incrementation reactions" sassumes that "if for each of two sets of molecules the total number of bonds, atoms and structural types is the same, then the total heat of formation of each set of molecules is the same. Then, if all but one of the heats are available, the remaining one can be estimated by simple arithmetic. It deals with ring strain, resonance energy and other interactions much more explicitly but less universally by embedding these corrections in the heat of formation of the individual molecules which among them possess the desired bonding characteristics. Further, it maximizes the direct use of available experimental data." s6.

Quite clearly, the last three approaches described here are interrelatable, and "were they flawless, they would agree with each other and with experiment" 67 . Furthermore, macroincrementation considerations, when coupled with the earlier assumption, $\Delta \Delta_t H = \Delta E_{tot}$, result in "isodesmic reactions" and "group separation reactions", widely employed here and elsewhere.

5.2.3. References

The reference citations given in Table 2 refer to the sources of data on the heats of formation of the neutral molecules. The references having to do with proton affinity determinations are given at the end of Table 1. In the column labelled "Reference" in Table 2, the appropriate literature reference is given as an eight-character identifier showing the year the paper appeared and the first three letters of the names of the first two authors. In addition, as discussed above in part, the following specialized notations and abbreviations are used:

Notation	Definition
82/TN270	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, "The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C ₁ and C ₂ Organic Substances in SI Units," J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).
JANAF	(a) D. R. Stull and H. Prophet, "JANAF Thermochemical Tables," NSRDS-NBS 37 (1971). (b) M. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, "JANAF Thermochemical Tables," 1975 Supplement, J. Phys. Chem. Ref. Data 4, 1 (1975); (c) M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A. McDonald, A.

N. Syverud, and E. A. Valenzuela, J. Phys. Chem.

Notation

*00ABC/DEF A condensed phase heat of formation was obtained from 77PED/RYL (J. B. Pedley and J. Rylance, "Sussex-N. P. L. Computer Analysed Thermochemical Data: Organic and Organometallic Comppounds," University of Sussex (1977)) and translated into a gas phase heat of formation using heat of vaporization or sublimation data from the reference 00ABC/DEF.

Definition

Est The gas phase heat of formation was estimated using the approaches described in the previous section.

DEF A defined heat of formation.

(E) or (Z) In the absence of other information, the most stable isomeric configuration (usually E) has been assumed.

6. Literature Coverage

Data from literature which appeared before June 1983, are included. A number of researchers who were aware that this compilation was in progress made available to the authors preprints of work which was in press or in preparation, and these more recent data are also included. Older data, which have been superseded by newer, better, measurements have been omitted. These include primarily bracketing measurements which have been replaced by results from equilibrium studies. In some cases where an author has repeated his own measurements in a later study and obtained different results, both sets of data are included, with preference generally given to the more recent set in carrying out the evaluation. Exceptions to this policy are specifically mentioned under the description of the evaluation of a paper in the annotated reference. Particularly in laboratories which have been very active in determinations of proton affinities from ion-molecule equilibrium constant measurements, one sees that closely similar or identical results on a particular molecule or set of molecules often appear in various publications from the laboratory without specific reference to earlier appearances of the data in print. In these cases, we do not presume to try to judge who the "original" author was, but simply present all the reincarnations of the data set.

In a few cases, authors have bracketed the gas phase basicities of molecules between limits which are so widely spaced (i.e., ammonia and water) that the result is difficult to present in the more quantitative scale given here; in such cases, the paper is listed in the bibliography, but the result is not included in the Tables 1 and 2. Other authors have given only an upper or lower limit to a gas basicity; these results have not been included.

Acknowledgements

As specifically noted, Mahnaz Motevalli-Aliabadi collaborated in the preparation of Table 2, carrying out

Ref. Data 11, 695 (1982).

estimates of the heats of formation of neutral molecules. In addition, the authors gratefully acknowledge the work of Carol Martin and Clairemarie Lanthier who critically proofread the Tables, and Ricardo Metz, Nathan Seidenman, Carlo Messina, and Dr. Thomas J. Buckley who carried out the computer processing leading to the production of the final manuscript.

We would also like to acknowledge those colleagues, notably Dr. Michael Mautner, who made available to the authors experimental data which was in various stages of preparation, so that the compilation could be as complete and up-to-date as possible.

One of us (J. F. L.) acknowledges partial support from the U. S. Department of Energy, Office of Health and Environmental Research.

7. References

- ¹D. K. Bohme, "The Kinetics and Energetics of Proton Transfer," in *Interactions between Ions and Molecules*, P. Ausloos, Editor, pp. 489-504, Plenum Press, New York (1975).
- ²R. W. Taft, "Gas Phase Proton Transfer Equilibria," in *Proton Transfer Reactions*, E. F. Caldin and V. Gold, Editors, pp.31-78, John Wiley & Sons, New York (1975).
- ³E. M. Arnett, "Proton Transfer and the Solvation of Ammonium Ions," in *Proton Transfer Reactions*, E. F. Caldin and V. Gold, Editors, pp.79-101, John Wiley & Sons, New York (1975).
- ⁴P. Kebarle, "Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria," Ann. Rev. Phys. Chem. 28, 445 (1977).
- ⁵D. H. Aue and M. T. Bowers, "Stabilities of Positive Ions from Equilibrium Gas Phase Basicity Measurements," in *Gas Phase Ion Chemistry*, M. T. Bowers, Editor, pp. 1-51, Academic Press, New York (1979).
- ⁶R. W. Taft, "Protonic Acidities and Basicities in the Gas Phase and in Solution: Substituent and Solvent Effects," Prog. Phys. Org. Chem. 14, 248 (1983).
- ⁷C. R. Moylan and J. I. Brauman, "Gas Phase Acid-Base Chemistry," Ann. Rev. Phys. Chem. 34, 187 (1983).
- ⁸K. N. Hartman, S. Lias, P. Ausloos, H. M. Rosenstock, S. S. Schroyer, C. Schmidt, D. Martinsen, and G. W. A. Milne, "A Compendium of Gas Phase Basicity and Proton Affinity Measurements," NBSIR 79-1777 (1979).
- ⁹R. Walder and J. L. Franklin, "Gas Phase Proton Affinities," Int. J. Mass Spectrom. Ion Phys. 36, 85 (1980).
- ¹⁰S. A. McLuckey, D. Cameron, and R. G. Cooks, "Proton Affinities from Dissociations of Proton Bound Dimers," J. Am. Chem. Soc. 103, 1313 (1981).
- ¹¹D. K. Bohme, G. I. Mackay, and H. I. Schiff. "Determination of Proton Affinities from the Kinetics of Proton Transfer Reactions. VII. The Proton Affinities of O₂, H₂, Kr, O, N₂, Xe, CO₂, CH₄, N₂O₂, and CO," J. Chem. Phys. 73, 4976 (1980).
- ¹²(a) S. G. Lias, "Thermochemistry of Polyatomic Cations," in Kinetics of Ion-Molecule Reactions (P. Ausloos, Editor), Plenum Publishing Corp. (1979), p. 223; (b) H. M. Rosenstock, ibid., p. 246.
- ¹³S. T. Ceyer, P. W. Tiedemann, B. H. Mahan, and Y. T. Lee, "Energetics of Gas Phase Proton Solvation by NH₃," J. Chem. Phys. 70, 14 (1979).
- ¹⁴M. J. Frisch, J. A. Pople, and J. E. Del Bene, unpublished results, personal communication.
- ¹⁵R. A. Eades, K. Scanlon, M. R. Ellenberger, D. A. Dixon, and D. S. Marynick, "The Proton Affinity of Ammonia. A Theoretical Determination," J. Phys. Chem. 84, 2840 (1980).
- ¹⁶J.E. Del Bene, M. J.Frisch, K. Raghavachari, and J. A. Pople, "Molecular Orbital Study of Some Protonated Bases," J. Phys. Chem. 86, 1529 (1982).
- ¹⁷J. C. Traeger, R. G. McLoughlin, and A. J. C. Nicholson, "Heat of

- Formation for Acetyl Cation in the Gas Phase," J. Am. Chem. Soc. 104, 5318 (1982).
- ¹⁸R. L. Nuttall, A.H. Laufer, and M. V. Kilday, "The Enthalpy of Formation of Ketene," J. Chem. Thermodyn. 3, 167 (1971).
- ¹⁹J. Vogt, A. D. Williamson, and J. L. Beauchamp, "Properties and Reactions of Ketene in the Gas Phase by Ion Cyclotron Resonance Spectroscopy and Photoionization Mass Spectrometry. Proton Affinity, Site Specificity of Protonation, and Heat of Formation of Ketene," J. Am. Chem. Soc. 100, 3478 (1978).
- ²⁰W. R. Davidson, Y. K. Lau, and P. Kebarle, "Gas Phase Dissociation of Protonated Acetic Acid to the Acyl Cation and Water. Heat of Formation of CH₃CO⁺ and Proton Affinity of Ketene," Can. J. Chem. 56, 1016 (1978).
- ²¹J. C. Traeger and R. G. McLoughlin, "Absolute Heats of Formation for Gas Phase Cations," J. Am. Chem. Soc. 103, 3647 (1981).
- ²²W. Tsang, "Thermal Stability of Primary Amines," Int. J. Chem. Kinet. 10, 41 (1978).
- ²³F. A. Houle and J. L. Beauchamp, "Photoelectron Spectroscopy of Methyl, Ethyl, Isopropyl, and tert-Butyl Radicals. Implications for the Thermochemistry and Structures of the Radicals and Their Corresponding Carbonium Ions," J. Am. Chem. Soc. 101, 4067 (1979).
- ²⁴C. E. Canosa and R. M. Marshall, "The Rate Constant for $t-C_4H_9 \rightarrow H + i-C_4H_8$ and the Thermodynamic Parameters of $t-C_4H_9$," Int. J. Chem. Kinet. 13, 303 (1981).
- ²⁵A. L. Castelhano, P. R. Marriott, and D. Griller, "Heats of Formation of tert-Butyl and Ethyl Radicals," J. Am. Chem. Soc. 103, 4262 (1981).
- ²⁶J. L. Holmes and F. P. Lossing, "Heats of Formation of Organic Radicals from Appearance Energies," Int. J. Mass Spectrom. Ion Phys. in press.
- ²⁷D. F. McMillen and D. M. Golden, "Hydrocarbon Bond Dissociation Energies," Ann. Rev. Phys. Chem. 33, 493 (1982).
- ²⁸J. Dyke, N. Jonathan, E. Lee, A. Morris, and M. Winter, "Vacuum Ultraviolet Photoelectron Spectroscopy of Transient Species: Part 8, The t-Butyl Radical," Phys. Scr. 16, 197 (1977).
- ²⁹J.-L. M. Abboud, W. J. Hehre, and R. W. Taft, "Benzyl Cation. A Long Lived Species in the Gas Phase?," J. Am. Chem. Soc. 98, 6072 (1976).
- ³⁰ J.-A. A. Jackson, S. G. Lias, and P. Ausloos, "An Ion Cyclotron Resonance Study of the Structures of C₇H₇⁺ Ions," J. Am. Chem. Soc. 99, 7515 (1977).
- ³¹D. K. Sen Sharma and P. Kebarle, "Stability and Reactivity of the Benzyl and Tropyllum Cations in the Gas Phase," Can. J. Chem. 59, 1592 (1981).
- ³²M. Rossi and D. M. Golden, "Absolute Rate Constants for Metathesis Reactions of Allyl and Benzyl Radicals with HI(DI). Heat of Formation of Allyl and Benzyl Radicals," J. Am. Chem. Soc. 101, 1230 (1979).
- ³³F. A. Houle and J. L. Beauchamp, "Detection and Investigation of Allyl and Benzyl Radicals by Photoelectron Spectroscopy," J. Am. Chem. Soc. 100, 3290 (1978).
- ³⁴J. B. Pedley and J. Rylance, "Sussex-N. P. L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds," University of Sussex (1977).
- ³⁵S. J. Ashcroft, "Vapor Pressures and Enthalpies of Vaporization of Benzyl Halides," J. Chem. Eng. Data 21, 397 (1976).
- ³⁶S. G. Lias, D. M. Shold, and P. Ausloos, "Proton Transfer Reactions Involving Alkyl Ions and Alkenes. Rate Constants, Isomerization Processes, and the Derivation of Thermochemical Data", J. Am. Chem. Soc. 102, 2540 (1980).
- 37 T. Baer, "Gas Phase Heats of Formation of $C_2H_5^+$ and $C_3H_7^+$," J. Am. Chem. Soc. **102**, 2482 (1980).
- ³⁸H. M. Rosenstock, R. Buff, M. A. A. Ferreira, S. G. Lias, A. C. Parr, R. L. Stockbauer, and J. L. Holmes, "Fragmentation Mechanism and Energetics of Some Alkyl Halide Ions," J. Am. Chem. Soc. 104, 2337 (1982).
- ³⁹D. Cremer, J. S. Binkley, J. A. Pople, and W. J. Hehre, "Molecular Orbital Theory of the Electronic Structure of Organic Compounds. XXI. Rotational Potentials for Geminal Methyl Groups," J. Am.

- Chem. Soc. 96, 6900 (1974).
- ⁴⁰S. M. Collyer and T. B. McMahon, "Proton Affinity of Water. A Scale of Gas Phase Basicities Including Ethylene and Water from Ion Cyclotron Resonance Proton Transfer Equilibria Measurements," J. Phys. Chem. 87, 909 (1983).
- ⁴¹R. Yamdagni and P. Kebarle, "Gas Phase Basicities and Proton Affinities of Compounds between Water and Ammonia and Substituted Benzenes from a Continuous Ladder of Proton Transfer Equilibria Measurements," J. Am. Chem. Soc. 98, 1320 (1976).
- ⁴²K. M. A. Refaey and W. A. Chupka, "Photoionization of the Lower Aliphatic Alcohols with Mass Analysis," J. Chem. Phys. 48, 5205 (1968).
- ⁴³I. Omura, T. Kaneko, Y. Yamada, and K. Tanaka, "Mass Spectrometric Studies of Photoionization. V. Methanol and Methanol-d," J. Phys. Soc. Japan 27, 981 (1969).
- ⁴⁴F. P. Lossing, "Heats of Formation of Some Isomeric [C_nH_{2n+1}O]⁺ Ions. Substitutional Effects on Ion Stability," J. Am. Chem. Soc. 99, 7526 (1977).
- ⁴⁵K. Tanaka, G. I. Mackay, and D. Bohme, "Rate and Equilibrium Constant Measurements for Gas-Phase Proton Transfer Reactions Involving H₂O, H₂S, HCN, and H₂CO," Can. J. Chem. 56, 193 (1978).
- ⁴⁶C. Y. Ng, D. J. Trevor, P. W. Tiedemann, S. T. Ceyer, P. L. Kronebusch, B. H. Mahan, and Y. T. Lee, "Photoionization of Dimeric Polyatomic Molecules: Proton Affinities of H₂O and HF," J. Chem. Phys. 67, 4235 (1977).
- ⁴⁷J. E. Del Bene, H. D. Mettee, M. J. Frisch, B. T. Luke, and J. A. Pople, "Ab Initio Computation of the Enthalpies of Some Gas-Phase Hydration Reactions," J. Phys. Chem. 87, 3279 (1983).
- ⁴⁸D. K. Bohme and G. I. Mackay, "Gas Phase Proton Affinities for H₂O, C₂H₄, and C₂H₆," J. Am. Chem. Soc. 103, 2173 (1981).
- ⁴⁹R. Clair and T. B. McMahon, "A Statistical Thermodynamic Analysis of the Entropy Change for the Equilibrium: H₃O⁺ + H₂S=H₃S⁺ + H₂O," Int. J. Mass Spectrom. Ion Phys. 39, 27 (1981).
- ⁵⁰K. Raghavachari, R. A. Whiteside, J. A. Pople, and P. v. R. Schleyer, "Molecular Orbital Theory of the Electronic Structure of Organic Molecules. 40. Structures and Energies of C₁-C₃ Carbocations, Including Effects of Electron Correlation," J. Am. Chem. Soc. 103, 5649 (1981).
- ⁵¹P. M. Guyon, W. A. Chupka, and J. Berkowitz, "Photoionization Mass Spectrometric Study of Formaldehyde H₂CO, HDCO and D₂CO," J. Chem. Phys. **64**, 1419 (1976).
- ⁵²C. Matthews and P. Warneck, "Heats of Formation of CHO⁺ and C,H₃⁺ by Photoionization," J. Chem. Phys. **51**, 854 (1969).
- ⁵³J. M. Dyke, N. Jonathan, A. Morris, and M. J. Winter, "The First Ionization Potential of the Formyl Radical Studied with U.V. Photoelectron Spectroscopy," Molecular Physics 39, 629 (1980).
- ⁵⁴P. Warneck, "Heat of Formation of the HCO Radical," Z. Naturforsch. 29a, 350 (1974).

- 55K. E. McCulloh, "Energetics and Mechanisms of Fragment Ion Formation in the Photoionization of Normal and Deuterated Water and Ammonia," Int. J. Mass Spectrom. Ion. Phys. 21, 333 (1976).
- ⁵⁶J. Berkowitz, E. H. Appelman, and W. A. Chupka, "Photoionization of HOF with Mass Analysis," J. Chem. Phys. 58, 1950 (1973).
- ⁵⁷S. Katsumata and D. R. Lloyd, "The Photoelectron Spectra of the OH and OD Radicals," Chem. Phys. Letters 45, 519 (1977).
- ⁵⁸J. M. Dyke, N. Jonathan, A. Morris, and M. J. Winter, "The He I Photoelectron Spectrum of the Hydroperoxy Radical," Molecular Physics 44, 1059 (1981).
- ⁵⁹D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, "The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C₁ and C₂ Organic Substances in SI Units," J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982).
- ⁶⁰K. E. McCulloh, "The Proton Affinity of O₂ from Photoionization Studies of H₂O₂," Proc. 25th Ann. Conf. Mass Spectrom. Allied Topics, Washington, D. C., 1977. Also cited as data "To be published" in K. N. Hartman, S. Lias, P. Ausloos, H. M. Rosenstock, S. S. Schroyer, C. Schmidt, D. Martinsen, and G. W. A. Milne, "A Compendium of Gas Phase Basicity and Proton Affinity Measurements," NBSIR 79-1777 (1979).
- ⁶¹(a) D. R. Stull and H. Prophet, "JANAF Thermochemical Tables," NSRDS-NBS 37 (1971); (b) M. W. Chase, J. L. Curnutt, H. Prophet, R. A. McDonald, and A. N. Syverud, "JANAF Thermochemical Tables, 1975 Supplement, J. Phys. Chem. Ref. Data 4, 1 (1975); (c) M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, J. Chem. Phys. Ref. Data, 11, 695 (1982).
- 62J. F. Liebman and M. Motevalli-Aliabadi, in preparation.
- ⁶³S. W. Benson and J. H. Buss, "Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties," J. Chem. Phys. 29, 546 (1958).
- ⁶⁴S. W. Benson, "Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters," John Wiley & Sons, New York (1976).
- ⁶⁵K. Bystrom, "Enthalpies of Combustion, Vaporization and Formation for Di-n-propyldiazene N-oxide and Di-t-butyldiazene N-oxide," J. Chem. Thermodyn. 13, 139 (1981).
- 66H. M. Rosenstock, J. Dannacher, and J. F. Liebman, "The Role of Excited Electronic States in Ion Fragmentation: C₆H₆+," Radiat. Phys. Chem. 20, 7 (1982).
- ⁶⁷S. W. Benson, personal communication.
- ⁶⁸W. J. Hehre, R. Ditchfield, I. Radom, and J. A. Pople, "Molecular Orbital Theory of the Electronic Structure of Organic Compounds. V. Molecular Theory of Bond Separation," J. Am. Chem. Soc. 92, 4796 (1970).
- ⁶⁹J. D. Dill, A. Greenberg, and J. F. Liebman, "Substituent Effects on Strain Energies," J. Am. Chem. Soc. 101, 6814 (1979).

Table 1. Gas phase basicities and proton affinities

	тк	Refer- ence base	Relative gas basicity	Gas basicity		lected gas sicity		oton inity	Reference
			kcal/mol	kcal/mol		ol kJ/mol	kcal/mo	l kJ/mol	
[C ₁₄ H ₁₈ napht	_	N,N,N ediamine	',N'-Tetrame RN 20734-		234.8	982.	241.8	1012	
	320 600	ZZ A	(34.9) (39.2)	234.9 234.8					83TAF 78LAU/SAI
[C ₈ H ₂₀ N	1 ₂] (CI	H ₃) 2N (CH	2)4N(CH3)2 F	RN 111-51-3	232.6	973.	240.4	1006.	
	320 300	A	(37.9)	233.5 231.7**			•		TAFT 79AUE/BO
[C ₁₄ H ₂₇ RN xx		-Methyl-	2,6-t-butylg	oiperidine	231.4	968.	239.2	1001.	
	320	ZZ	(31.4)	231.4					83TAF
[C7H18N	1 ₂] (CI	н ₃) 2 ^N (Сн	2)3N(CH ₃)2 F	RN 110-95-2	231.0	967.	238.8	999.	
	320 300	Α.	(36.2)	231.8 230.2**					TAFT 79AUE/BOW
[C5H14N	12] 1,	5-Diamin	opentane R	1 462-94-2	223.0	933.	238.1	996.	
	298 300 300 600	A C A	(30.4) (12.9) (26.2)	225.0 223.0 221.9* 221.3					73YAM/KEI 73AUE/WEI 79AUE/BOI 78LAU/SAI
[C7H18N	[2] 1,	7-Diamin	oheptane Ri	N 646-19-5	224.2	938.	238.	996.	
	298	E	(6.9)	224.2					73YAM/KEI
[C ₁₀ H ₂₄	N ₂] (CH ₃) ₂ N(C	H ₂) ₆ N(CH ₃) ₂	RN 111-18-2	230.1	963.	237.9	995.	
	320 300	A	(35.3)	230.9 229.3**					TAFT 79AUE/BO
[C6H16N	2] 1,	6-Diamin	ohexane RN	124-09-4	223.0	933.	237.7	994.5	
	300 300	С	(12.9)	223.0 221.9**					73AUE/WEI 79AUE/BO
[C4H12N	2] 1,	4-Diamin	obutane R N	110-60-1	225.0	941.	237.6	994.	
	330 300 300	D C	(12.2) (14.6)	225.3 224.7 223.9*					80MAU/HAI 73AUE/WEI 79AUE/BOI
[C5H14N	1 ₂] (CI	H ₃) 2N (CH	2)3 ^{NH} 2 RN	109-55-7	229.4	959.	237.2	992.	
	320 300	A	(33.8)	229.4 228.0**					TAFT 79AUE/BO
[C ₆ H ₁₃ N	[] (CH	3) 2NC (CH	3) = CHCH3 RI	N 52113-79-8	~229	~958	~237	~991	
		(br)		~229					81ELL/DI
[C ₆ H ₁₆ N	1 ₂] (CI	H ₃) 2N (CH	2) 2N (CH ₃) 2	RN 110-18-9	228.6	956.5	236.4	989.	
	320 300	A	(33.0)	228.6 227.2**				ı	75TAF 79AUE/BO
[C7H15N	[] (CH	3) 2NC (C2	H ₅) =CHCH ₃ Ri	78733-73 - 0	228.6	956.	236.4	989.	
		(br)		228.6					8lELL/DIX

Table 1. Gas phase basicities and proton affinities--Continued

	тк	Refer- ence base	Relative gas basicity	Gas basicity	g	ected as	Pro affi		Reference
		<i>D</i> 436	kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C ₇ H ₁₀ N ₂ RN 112	•		hyl-4-pyric	dinamine	228.4	956.	236.2	988.	
	320 300	A	(33.3)	228.9 227.9*					TAFT 76AUE/WEB(2
C ₁₃ H ₁₆ N lenedi			methyl-1,8-	-naphtha-	227.8	953.	235.6	986.	
	600	A	(32.2)	227.8					78LAU/SAL
[C ₈ H ₁₉ N]	(i-0	C ₃ H ₇) ₂ (C ₂	H ₅)N RN 70	087-68-5	227.5	952.	235.3	984.	
	320	A	(31.9)	227.5					TAFT
[C ₁₀ H ₁₆ N	12] 1	2- (N (CH ₃) ₂) ₂ C ₆ H ₄	RN 704-01-8	227.4	951.	235.2	984.	
	600	Α .	(31.8)	227.4		•			78LAU/SAL
[C9H21N]	(t-0	С ₄ н ₉) С (Сн	(3) 2N (CH3) 2	RN 3733-36-6	227.3	951.	235.1	984.	
	320	A	(31.7)	227.3					78SHE/GOB
[C ₁₂ H ₂₇ N	N] (n-	-C ₄ H ₉) ₃ N	RN 102-8	2-9	227.0*	950.*	234.8*	982.*	
	300	В	(21.3)	227.0*					79AUE/BOW
(C ₁₃ H ₂₅ N	1] 2,6	5-Di-t-bu	tylpiperid	ine RN xxxxx	226.5	948.	234.3	980.	
	320	ZZ	(26.5)	226.5					83TAF
[C ₈ H ₁₅ N] RN 35			hyl-1,2,3,4	4-tetrahydrop	yridine		234.2**	980.**	80HOU/VOG
	1 1 2				222.0				
^{[C3H} 10N2	1 1/3	B-Diamino	propane Ri	N 109-76-2	222.0	929.	234.1	979.	
^{lC3H} 10 ^N 2	298 330 300 300	B-Diamino A D C	(30.1) (8.8) (12.0)	225.7 221.9 222.1 220.9*	222.0	929.	234.1	979.	73YAM/KEB 80MAU/HAM 73AUE/WEB 79AUE/BOW
	298 330 300 300	A D C	(30.1)	225.7 221.9 222.1 220.9*	226.2	929. 946.	234.1	979. 979.	80MAU/HAM 73AUE/WEB
	298 330 300 300	A D C	(30.1) (8.8) (12.0)	225.7 221.9 222.1 220.9*					80MAU/HAM 73AUE/WEB
[C9 ^H 21 ^N]	298 330 300 300 (n- 320 320 320 300 300	A D C C-C ₃ H ₇) ₃ N ZZ A A B	(30.1) (8.8) (12.0) RN 102-69- (27.1) (31.3) (30.6) (19.9) (20.5)	225.7 221.9 222.1 220.9* -2 227.1 226.9 226.2 225.6* 226.2					80MAU/HAM 73AUE/WEB 79AUE/BOW 83TAF TAFT 75TAF-75ARN 79AUE/BOW
[C9 ^H 21 ^N]	298 330 300 300 (n- 320 320 320 300 300	A D C C3H7)3N ZZ A A B B	(30.1) (8.8) (12.0) RN 102-69- (27.1) (31.3) (30.6) (19.9) (20.5)	225.7 221.9 222.1 220.9* -2 227.1 226.9 226.2 225.6* 226.2	226.2	946.	234.0	979.	80MAU/HAM 73AUE/WEB 79AUE/BOW 83TAF TAFT 75TAF-75ARN 79AUE/BOW
С ₉ Н ₂₁ N] С ₄ Н ₁₁ NO	298 330 300 300 (n- 320 320 320 300 300	A D C C3H7)3N ZZ A A B B B (CH ₂)4OH D	(30.1) (8.8) (12.0) RN 102-69- (27.1) (31.3) (30.6) (19.9) (20.5) RN 13325-	225.7 221.9 222.1 220.9* -2 227.1 226.9 226.2 225.6* 226.2	226.2	946.	234.0	979.	80MAU/HAM 73AUE/WEB 79AUE/BOW 83TAF TAFT 75TAF-75ARN 79AUE/BOW 72AUE/WEB
[C ₉ H ₂₁ N] [C ₄ H ₁₁ NO [C ₁₃ H ₂₁ N RN 585	298 330 300 300 (n- 320 320 320 300 300	A D C C3H7)3N ZZ A A B B B (CH ₂)4OH D	(30.1) (8.8) (12.0) RN 102-69- (27.1) (31.3) (30.6) (19.9) (20.5) RN 13325- (7.6)	225.7 221.9 222.1 220.9* -2 227.1 226.9 226.2 225.6* 226.2	226.2	946.	234.0	979. 978.	80MAU/HAM 73AUE/WEB 79AUE/BOW 83TAF TAFT 75TAF-75ARN 79AUE/BOW 72AUE/WEB 80MAU/HAM 83TAF TAFT 75TAF-75ARN 75WOL/HAR
[C ₉ H ₂₁ N] [C ₄ H ₁₁ NO [C ₁₃ H ₂₁ N RN 585	298 330 300 300 (n- 320 320 320 300 300] NH2 320 320 320 320 320 320 320 320 320 32	A D C C 3H7) 3N ZZ A A B B B C (CH2) 4OH D Z 2.6-Di-t ZZ A A A A A A A A A A A A A A A	(30.1) (8.8) (12.0) RN 102-69- (27.1) (31.3) (30.6) (19.9) (20.5) RN 13325- (7.6) -buty1pyrid (24.4) (28.8) (29.8) (28.2) (13.6)	225.7 221.9 222.1 220.9* -2 227.1 226.9 226.2 225.6* 226.2 -10-5 220.7 Sine 224.4 224.4 225.4 225.4 223.8 223*	226.2	946.	234.0	979. 978.	80MAU/HAM 73AUE/WEB 79AUE/BOW 83TAF TAFT 75TAF-75ARN 79AUE/BOW 72AUE/WEB 80MAU/HAM 83TAF TAFT 75TAF-75ARN 75WOL/HAR 76AUE/WEB (2

Table 1. Gas phase basicities and proton affinities--Continued

	T K Refer ence base		ce gas basicity		g	ected as	Pro affi		Reference	
		Dase	kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol		
[C9H17N]	1 - C	yclopent	ylpyrrolidi	ne RN 18707-	-33-0		233.1**	975.**		
									79AUE/BOW	
C ₁₅ H ₁₈			hyl-7-isopr	opylazulene	225.	941.	233.	975.		
	320	ZZ	(25.)	225.					77WOL/ABB	
C ₁₁ H ₁₇ N RN 683			ropylpyridi	ne	225.1	942.	232.9	974.		
	425	D	(12.0)	225.1					83MAU/SIE	
[C9H19N]	N-I	sobutylp	iperidine R	N 10315-89-6			232.9**	974.**		
, 1,		_							80HOU/VOG	
[C ₉ H ₂₁ N]	(t-	C ₅ H ₁₁) (t	-C4H9)NH R	N 58471-09-3	224.7*	940.	232.5*	973.		
	300	В	(19.0)	224.7*					79AUE/BOW	
CoH18N	,] 1,	5-Diazab	icyclo[3.3.	3]-	224.6	940.	232.4	972.		
undeca	ne	RN 28	3-58-9							
	320	A	(29.0)	224.6					81ALD/ARR	
[C6H15N]	(C2	H ₅) ₃ N R	N 121-44-8		224.5	939.	232.3	972.		
	320	A	(29.3)	224.9					83TAF	
	320 320	A A	(28.9) (28.5)	224.5 223.9					72ARN/JON	
	320	A	(28.8)	224.5					77STA/TAA-75T# 83MCI	
	320	E	(7.3)	225.1					74STA/BEA(2)	
	300	В	(17.7)	223.4*					79AUE/BOW	
	300 550	B C	(18.2) (14.7)	223.9 224.8					72AUE/WEB 79MAU	
(C7H13N)	1-A	zabicycl	o[2.2.2]oct	ane	224.3	938.	232.1	971.		
(Quint			N 100-76-5							
	320	ZZ	(25.5)	225.5					83TAF	
	320 300	A	(28.9)	224.5					77STA/TAA-75TA	
	320	B E	(17.9) (7.7)	223.6* 225.5					79AUE/BOW 74STA/BEA(2)	
							232.1**	971.**	80HOU/VOG	
C6H15N	(CH	3) ₂ (t-C ₄	H ₉)N RN 91	8-02-5	224.2	938.	232.0	971.		
	320	A	(28.6)	224.2					TAFT	
C ₁₁ H ₁₃ N RN 436		-	o-1,4-ethan	oquinoline	224.2	938.	232.0	971.		
	320	Α	(28.6)	224.2					TAFT	
[C7H17N]	(C ₂	H ₅) ₂ (n-C	3H7)N RN 4	458-31-5	224.2**	938.**	232.0**	971.**		
	300	В	(18.5)	224.2*					79AUE/BOW	
		,3-Dimet	hoxy- 2]octane RN	xxxx	224**	937**	232**	971**		
	300			224**					79AUE/BOW	
C ₁₃ H _o N]	Acr	idine R	N 260-94-6		224.1	938.	231.9	970.	, ,	
,	550	С	(14.0)	224.1		•			70,000,00	
		~	(==•0)						79MAU	

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer- ence base	Relative gas basicity	Gas basicity	g	ected as	Pro affi		Reference
		kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C6H9N3O2] L-	Histidi	ne RN xxxx	t	224.1	938.	231.9	970.	
	A	(28.5)	224.1					83MCI
[C ₇ H ₁₉ NSi] RN 23138-94		3Si (CH ₂) ₂ N (CF	¹ 3 ⁾ 2	224.0	937.	231.8	970.	
320	A	(28.4)	224.0					78SHE/GOB
[C ₈ H ₂₁ NSi] (C RN 28247-29		(СН ₂) 3N (СН ₃) 2	2	224.0	937.	231.8	970.	
320	A	(28.4)	224.0					78SHE/GOB
[C ₈ H ₁₉ N] (sec	-C4H9)2	NH RN 626-	-23-3	223.6	935.5	231.8	970.	
300	В	(17.0)	223.6					72AUE/WEB
[C ₇ H ₁₄ N ₂] 3-A RN 6238-14-		azabicyclo[2	2.2.2]octane	224.0**	937.**	231.8**	970.**	
300			224.0**					79AUE/BOW
[C ₈ H ₁₅ N] 3-M RN 695-88-5	ethyl-l	-azabicyclo(2.2.2]octane	223.9**	937.**	231.7**	969.**	
300			223.9**					79AUE/BOW
[С ₆ н ₁₅ Р] (С ₂ н	5)3 ^{P R}	N 554-70-1		223.9**	937.**	231.7**	969.**	
300			223.9**					79AUE/BOW
[C ₉ H ₁₉ N] 2,2, piperidine		-		223.9**	937.**	231.7**	969.**	
300			223.9**					79AUE/BOW
[C ₆ H ₁₇ NSi] (C	H ₃) ₃ SiC	H ₂ N(CH ₃) ₂ RN	18182-40-6	223.6	936.	231.5	968.	
320 320	A A	(28.0) (27.9)	223.6 223.5					TAFT 78SHE/GOB
[C ₁₃ H ₂₁ N] Pyr t-butyl RN				223.6*	935.5**	231.4**	968.**	
300			223.6*					76AUE/WEB(2
[C ₉ H ₁₃ N] 2,6-	Diethyl	pyridine RN	935-28-4	223.3	934.	231.1	967.	
425	D	(10.2)	223.3					83MAU/SIE
[C ₈ H ₁₃ N] 1-Az oct-2-ene,3				223.2**	934.**	231.0**	966.5**	
300			223.2**					79AUE/BOW
[C ₆ H ₁₅ NO] N	H ₂ (CH ₂)	₆ 0H RN 404	8-33-3	216.0**	904.**	231.0**	966.5**	
300			216.0**					79AUE/BOW
[C ₈ H ₁₇ N] 1,4	,4-Trim	ethylpiperid	ine RN 1003-	34-5		230.8**	966.**	
							é	80HOU/VOG
[C ₁₂ H ₂₁ N] (CH	2=C (CH3	CH ₂) ₃ N RN	xxxx	222.9**	932.6**	230.7**	965.**	
300	,		222.9**					79AUE/BOW

Table 1. Gas phase basicities and proton affinities--Continued

Real/mol		T K	Refer- ence	ence gas basicity			ected as	Prot affi		Reference
300			base	basicity kcal/mol	kcal/mol			kcal/mol	kJ/mol	
C28H19N] (CH3)3C(CH2)2N(CH3)2 RN 15673-04-8 222.6 931. 230.4 964. 320 A (27.0) 222.6 788HE/G C13H13P] (C6H5)2(CH3)P RN 1486-28-8 222.5 931. 230.3 963.5 320 EE (3.2) 222.5 931. 230.3 963.5 C6H14N2O2] L-Lysine RN 56-87-1 222.5 931. 230.3 963.5 A (26.9) 222.5 383MCI C6H15N] (i-C3H7)2NH RN 108-18-9 222.0 929. 230.2 963. 320 A (26.4) 222.0 320 A (26.4) 222.0 320 A (26.5) 221.1 83MCI C10H10N] 1-Azabicyclo[2.2.2] 221.9 75AUR/M C10H10N] 1-Azabicyclo[2.2.2] 222.3 930. 230.1 963. (Manxine) RN 31023-92-4 222.3** C26H13N] 1-Azabicyclo[2.2.2] 222.3** C26H13N] (CH3) (C2H5)2N RN 616-39-7 222.3 930. 230.1 963.** C30 A (26.3) 222.5 77APT-7 C12H24O6] 1.4.7.10.13.16-Hexaoxa 222.3 930. 230.0 962. C30 A (26.3) 221.9 77APT-7 C12H24O6] 1.4.7.10.13.16-Hexaoxa 216.0 904. 230.0 962. C12H1NN] N.N'-Dimethyl-1.8-naphthalene 223.0 933. 230.0 962. C29H15N] (CH2-CHCH2)3N RN 102-70-5 222.2 930. 230.0 962. C29H15N] (CH2-CHCH2)3N RN 102-70-5 222.2 930. 230.0 962. C29H5N] (CH2-CHCH2)3N RN 102-70-5 222.2 930. 230.0 962. C300	С ₉ Н ₁₇ N] c-C	5H10NCH=	C(CH ₃) ₂ RN 6	73-33-6	222.9**	932.6**	230.7**	965.**	
Company Comp		300			222.9**					79AUE/BOW
Clashaspi (C6Hs)2(Ch3)P RN 1486-28-8 222.5 931. 230.3 963.5 821KU/K C6H14N2O2] L-Lysine RN 56-87-1 222.5 931. 230.3 963.5 A (26.9) 222.5 931. 230.3 963.5 A (26.9) 222.5 931. 230.3 963.5 C6H15N] (i-C3H7)2NH RN 108-18-9 222.0 929. 230.2 963. 320 A (26.4) 222.0 75ANN 200 B (15.0) 220.7 75ANN 200 B (15.0) 220.7 75ANN 200 B (16.2) 221.9 75ANN 200 B (16.6) 222.3 300 B (16.6) 222.3 300 B (16.6) 222.3 75ANN 200 B (22.2) 75ANN 200 B (26.9) 222.3 75ANN 200 B (26.9) 222.3 75ANN 200 B (26.3) 221.9 75ANN 200 B (26.4) 221.9 75ANN 200 B (26.4) 222.0 75ANN 200 B (26.4) 222.0 75ANN 200 B (26.4) 222.1 75ANN 200 B (26.4) 222.0 75ANN 200 B (26.4) 222.1 5** CC9H5N] (C6H5N)3 P RN 603-35-0 222.5 931. 230. 962. 821KU/K 200 B (26.6) 222.1 5** CC9H5N] (C1BS) (C6H5N)3 P RN 603-35-0 222.5 931. 230. 962. 821KU/K 200 B (26.6) 222.1 5**	С ₈ н ₁₉ N] (CH	₃) ₃ С (СН ₂) ₂ N(CH ₃) ₂ RN	15673-04-8	222.6	931.	230.4	964.	
320 EE		320	A	(27.0)	222.6					78SHE/GOB
C ₆ H ₁₄ N ₂ O ₂] L-Lysine RN 56-87-1 222.5 931. 230.3 963.5 A (26.9) 222.5 83MCI C ₆ H ₁₅ N] (i-C ₃ H ₇) ₂ NH RN 108-18-9 222.0 929. 230.2 963. 320 A (25.5) 221.1 83MCI 320 B (15.0) 220.7* 75ARN 83MCI 300 B (15.0) 220.7* 300 B (15.0) 220.7* 300 B (15.2) 221.9 300 B (16.6) 222.3 930. 230.1 963. (C ₁₀ H ₁₉ N] 1-Azabicyclo[3.3.3]undecane 222.3 930. 230.1 963. (C ₁₀ H ₁₉ N] 1-Azabicyclo[2.2.2]- 223** 75AUE/W (C ₂₀ H ₁₃ N] 1-Azabicyclo[2.2.2]- 223** 930.** 230.1** 963.** 964. (C ₂₀ H ₁₃ N] 1-Azabicyclo[2.2.2]- 223** 75AUE/B (C ₂₀ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.3 930. 230.0 962. (C ₂ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. (C ₂ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. (C ₂ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. (C ₂ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. (C ₂ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₃ N RN 102-70-5 222.2 930. 230.0 962. (C ₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. (C ₂ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₂ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₃ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₃ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.0 930. 230.0 962. (C ₁ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.5 931. 730. 7962.	С ₁₃ н ₁₃	P] (C	6 ^Н 5) 2 (СН	3)P RN 1486	5-28-8	222.5	931.	230.3	963.5	
A (26.9) 222.5 A (26.9) 222.5 A (26.4) 222.0 320 A (25.5) 221.1 A (26.4) 222.0 320 A (25.5) 221.1 A (26.4) 222.0 300 B (15.0) 220.7* 300 B (15.0) 220.7* 300 B (15.0) 220.7* 300 B (16.6) 222.3 300 B (16.6) 223.** **Cotane,3-methylene RN 22207-84-7 300 222.3** **Cotane,3-methylene RN 22207-84-7 300 C5H13N] (CH3) (C2H5)2N RN 616-39-7 222.3** **Cotane,3-methylene RN 22207-84-7 300 222.3** **Cotane,3-methylene RN 22207-84-7 320 A (26.9) 222.5 320 A (26.9) 222.5 320 A (26.9) 222.5 320 A (26.4) 221.0 300 A (27.9) 223.0 **Cotane,3-methylene RN 20734-56-9 600 A (27.9) 223.0 **Cotane,3-methylene RN 200.1** **Cotane,3-methylene RN 200.1** **Cotane,3-methylene RN 200.1** **Cotan		320	EE	(3.2)	222.5					82IKU/KEB
C ₆ H ₁₅ N] (i-C ₃ H ₇) ₂ NH RN 108-18-9 222.0 929. 230.2 963. 320 A (25.5) 221.1 75ARN 38MC1 75ARN 38MC1 300 B (15.0) 220.7* 72AUE/W 72AUE/	C6H14N	2 ⁰ 2]	L-Lysine	RN 56-87-3	L	222.5	931.	230.3	963.5	
300 A (26.4) 222.0 320 A (25.5) 221.1 300 B (15.0) 220.7* 300 B (15.0) 220.7* 300 B (15.0) 220.7* 300 B (16.2) 221.9 CloH19N1 1-Azabicyclo[3.3.3]undecane 222.3 930. 230.1 963. (Manxine) RN 31023-92-4 300 B (16.6) 222.3 300 B (16.6) 222.3 300 B (16.6) 222.3* CgH13N] 1-Azabicyclo[2.2.2]- 222.3** CgH13N] 1-Azabicyclo[2.2.2]- 222.3** CgH13N] (CH3) (CgH5) 2N RN 616-39-7 222.3** CgH13N] (CH3) (CgH5) 2N RN 616-39-7 222.2 930. 230.0 962. CloH2406] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. CloC1H2406] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. CloC2H14N2] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. CloC2H14N2] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. CloC32 A (27.9) 223.0 CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH2=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH3=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH3=CHCH2) 3N RN 102-70-5 222.2 930. 230.0 962. CloC4H15N] (CH3=CHCH2) 3N RN 102-70-5 222.5 931. 730. 7962. 320 A (27.0) 222.6 320 A (27.0) 222.6 320 A (26.4) 222.0 330 A (26.4) 222.0 330 A (26.4) 222.0 330 A (26.4) 222.0 330 A (26.5) 222.7 929* 230* 962* CloC4H17N] (CH3) 2(neo-C5H1) N RN 10076-31-0 222.1 929. 229.9 962.			A	(26.9)	222.5					83MCI
320 Å (25.5) 221.1 A (26.4) 222.0 300 B (15.0) 220.7* 300 B (16.2) 220.7* 300 B (16.2) 221.9* (C ₁₀ H ₁₉ N) 1-Azabicyclo[3.3.3]undecane 222.3 930. 230.1 963. (Manxine) RN 31023-92-4 300 B (16.6) 222.3 300 B (16.6) 222.3* (C ₆ H ₁₃ N] 1-Azabicyclo[2.2.2]- 222.3** 0ctane, 3-methylene RN 22207-84-7 300 222.3** 300 A (26.9) 222.5 320 A (26.9) 222.5 320 A (26.3) 221.9 (C ₁₂ H ₂₄ O ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. (C ₁₂ H ₂₄ O ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. (C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. (C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. (C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. (C ₁₂ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. (C ₁₄ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. (C ₁₆ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. (C ₁₆ H ₁₅ N) (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. (C ₁₆ H ₁₅ N) (CH ₂) 4-Pyridinamine RN 504-24-5 222* 929* 230* 962* (C ₁₈ H ₁₅ P) (C ₆ H ₅) ₃ P RN 603-35-0 222* 22* 929* 230* 962* (C ₁₈ H ₁₅ P) (C ₆ H ₅) ₃ P RN 603-35-0 222* 22* 929* 230* 962* (C ₁₈ H ₁₅ P) (C ₁₈ H ₁₅ P) RN 603-35-0 222* 22* 929* 230* 962. 320 RE (3.2) 222* 228.9 931. 230. 962. 320 RE (3.2) 222.5 831. 230. 962.	C ₆ H ₁₅ N] (i-	С ₃ н ₇) ₂ Nн	RN 108-18-	-9	222.0	929.	230.2	963.	
(Manxine) RN 31023-92-4 300 B (16.6) 222.3 75AUE/W 79AUE/B [C ₈ H ₁₃ N] 1-Azabicyclo[2.2.2]- 222.3** 930.** 230.1** 963.** cottane,3-methylene RN 22207-84-7 300 222.3** 79AUE/B [C ₅ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. 320 A (26.9) 222.5 75TAF-7 [C ₁₂ H ₂₄ O ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. [C ₁₂ H ₂₄ O ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. [C ₁₂ H ₂₄ O ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. [C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. [C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. [C ₁₂ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. [C ₉ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. [C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222.5 931. 230. 962. [C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222.5 931. 230. 962. [C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222.5 931. 230. 962. [C ₇ H ₁₇ N] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 929. 229.9 962.		320 300	A A B	(25.5) (26.4) (15.0)	221.1 222.0 220.7*					75ARN
Cotane, 3-methylene RN 22207-84-7 300 222.3** 930.** 230.1** 963.** Cotane, 3-methylene RN 22207-84-7 300 222.3** 79AUE/B Cotane, 3-methylene RN 22207-84-7 222.2 930. 230.0 962. TAFT 75TAF-7 Cotane, 3-methylene RN 266.9 222.5 320 A (26.9) 222.5 320 A (26.9) 221.9 Cotane, 3-methylene RN 266.9 221.1.3 300 Potane RN 230.0 962. 320 A (27.9) 223.0 Cotane, 3-methylene RN 20734-56-9 320 A (27.9) 223.0 Cotane, 3-methylene RN 20734-56-9 320 A (27.9) 223.0 Cotane, 3-methylene RN 20734-56-9 320 A (27.0) 222.6 320 A (26.4) 222.0 320 B (27.0) 222.5 320 R (27.0) 222.6 320 A (26.4) 222.0 320 R (27.0) 222.6	-0 -0				decane	222.3	930.	230.1	963.	
Octane,3-methylene RN 22207-84-7 300 222.3** C5H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. 320 A (26.9) 222.5 320 A (26.3) 221.9 C1 ₂ H ₂ 4 ₂ 0 ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. cyclooctadecane (18-Crown-6) RN 17455-13-9 300 (Key) 211.3 300 A (20.4) 216.0 C1 ₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. diamine RN 20734-56-9 600 A (27.9) 223.0 C9H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. 320 A (27.0) 222.6 320 A (26.4) 222.0 3300 A (26.4) 222.5 300 C ₅ H ₆ N ₂] 4-Pyridinamine RN 504-24-5 222* C ₉ H ₁₅ N] (C ₉ H ₁₅ N) (C ₉ H ₁₅ N) RN 603-35-0 222* C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222* C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222* C ₁₈ H ₁₅ P] (C ₁ C ₁ C ₁ C ₁ C ₂ C ₁ C ₃ C ₁ C ₃ C ₁ C ₃ C ₁ C ₃			В	(16.6)						75AUE/WEB 79AUE/BOW
C ₅ H ₁₃ N] (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7 222.2 930. 230.0 962. 320 A (26.9) 222.5 75TAF-7 C ₁₂ H ₂₄ O ₆] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. cyclooctadecane (18-Crown-6) RN 17455-13-9 300 (Key) 211.3 83MAU 84SHA/B C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. diamine RN 20734-56-9 600 A (27.9) 223.0 78LAU/S C ₉ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. 320 A (26.4) 222.0 75TAF-7 79AUE/B C ₅ H ₆ N ₂] 4-Pyridinamine RN 504-24-5 222* 929* 230* 962* 76AUE/W C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222* 931. 230. 962. 320 RE (3.2) 22.5 931. 230. 962. C ₇ H ₁₇ N] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 929. 229.9 962.	0 -0				1-7	222.3**	930.**	230.1**	963.**	
320 A (26.9) 222.5 320 A (26.9) 221.9 320 A (26.3) 221.9 320 A (26.3) 221.9 320 A (26.3) 221.9 320 A (26.3) 221.9 320 A (26.4) 221.9 320 A (20.4) 216.0 320 A (20.4) 216.0 320 A (20.4) 216.0 320 A (20.4) 216.0 320 A (27.9) 223.0 320 A (27.9) 223.0 320 A (27.0) 222.6 320 A (27.0) 222.6 320 A (26.4) 222.0 320 A (26.6) 222.1 320 EE (32.2) 222.5 320 EE (32.2) 22		300			222.3**					79AUE/BOW
320 A (26.3) 221.9 75TAF-7 C12H2406] 1,4,7,10,13,16-Hexaoxa- 216.0 904. 230.0 962. cyclooctadecane (18-Crown-6) RN 17455-13-9 300 (Key) 211.3 83MAU 84SHA/B C12H14N2] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. diamine RN 20734-56-9 600 A (27.9) 223.0 78LAU/S C9H15N] (CH2=CHCH2)3N RN 102-70-5 222.2 930. 230.0 962. TAFT 75TAF-7 300 221.5** C5H6N2] 4-Pyridinamine RN 504-24-5 222* 929* 230* 962* 76AUE/W C18H15P] (C6H5)3P RN 603-35-0 222* 929* 230* 962. 320 RE (~3.2) 222.5 931. ~230. ~962. 320 RE (~3.2) 222.5 931. ~230. ~362. 320 RE (~3.2) 222.5 931. ~320. ~362. 320. ~3	C5H13N] (CH	3) (C ₂ H ₅)	2N RN 616-	39-7	222.2	930.	230.0	962.	
cyclooctadecane (18-Crown-6) RN 17455-13-9 300 (Key) 211.3 83MAU 84SHA/B C ₁₂ H ₁₄ N ₂] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. diamine RN 20734-56-9 600 A (27.9) 223.0 78LAU/S C ₉ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. 320 A (27.0) 222.6 320 A (26.4) 222.0 300 221.5** C ₅ H ₆ N ₂] 4-Pyridinamine RN 504-24-5 222* 929* 230* 962* 300 222* 76AUE/W C ₁₈ H ₁₅ P] (C ₆ H ₅) ₃ P RN 603-35-0 222.5 931. 230. 962. 320 EE (~3.2) 222.5 931. 230. 962. 320 EC (~3.2) 222.5 76AUE/W C ₇ H ₁₇ N] (CH ₃) ₂ (neo-C ₅ H ₁₁) N RN 10076-31-0 222.1 929. 229.9 962. 320 A (26.6) 222.1 TAFT										TAFT 75TAF-75AR
300 A (20.4) 216.0 84SHA/B $C_{12}H_{14}N_{2}$] N,N'-Dimethyl-1,8-naphthalene- 223.0 933. 230.0 962. diamine RN 20734-56-9 600 A (27.9) 223.0 78LAU/S $C_{9}H_{15}N$] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. $C_{9}H_{15}N$] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.6 75TAF-7 300 221.5** $C_{5}H_{6}N_{2}$] 4-Pyridinamine RN 504-24-5 222* 929* 230* 962* $C_{5}H_{6}N_{2}$] 4-Pyridinamine RN 504-24-5 222* 929* 230* 962* $C_{18}H_{15}P$] (C ₆ H ₅) ₃ P RN 603-35-0 222* 76AUE/W $C_{18}H_{15}P$] (C ₆ H ₅) ₃ P RN 603-35-0 222.5 931. 7230. 7962. $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 929. 229.9 962. $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 929. $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$] (CH ₃) ₂ (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 $C_{7}H_{17}N$]		•					904.	230.0	962.	
diamine RN 20734-56-9 600 A (27.9) 223.0 78LAU/S $C_9H_{15}N$] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 222.2 930. 230.0 962. $\begin{array}{cccccccccccccccccccccccccccccccccccc$				(20.4)						83MAU 84SHA/BLA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		_			phthalene-	223.0	933.	230.0	962.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		600	A	(27.9)	223.0					78LAU/SAL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	С ₉ н ₁₅ N] (CH	2 ^{=CHCH} 2)	3N RN 102-70)-5	222.2	930.	230.0	962.	
300 222* 76AUE/W $C_{18}H_{15}P_{1} (C_{6}H_{5})_{3}P$ RN 603-35-0 222.5 931. ~230. ~962. 320 RF (~3.2) 222.5 82IKU/K $C_{7}H_{17}N_{1} (CH_{3})_{2} (neo-C_{5}H_{11})N$ RN 10076-31-0 222.1 929. 229.9 962. 320 A (26.6) 222.1 TAFT		320			222.0					TAFT 75TAF-75AR 79AUE/BOW
$C_{18}H_{15}P]$ ($C_{6}H_{5}$) $_{3}P$ RN 603-35-0 222.5 931. ~230. ~962. 320 RE (~3.2) 222.5 821KU/K $C_{7}H_{17}N]$ (CH_{3}) $_{2}$ (neo- $C_{5}H_{11}$) N RN 10076-31-0 222.1 929. 229.9 962. 320 A (26.6) 222.1 TAFT	C5H6N2] 4-P	yridinam	ine RN 504	-24-5	222*	929*	230*	962*	
320 RF (~3.2) 222.5 821KU/K ${}^{C_{7}H_{17}N]}$ (CH ₃) 2 (neo-C ₅ H ₁₁)N RN 10076-31-0 222.1 929. 229.9 962. 320 A (26.6) 222.1		300			222*					76AUE/WEB(
$[C_7H_{17}N]$ $(CH_3)_2$ $(neo-C_5H_{11})N$ RN 10076-31-0 222.1 929. 229.9 962. 320 A (26.6) 222.1	С ₁₈ н ₁₅	P] (C	6 ^H 5 ⁾ 3 ^P	RN 603-35-0		222.5	931.	~230.	~962.	
320 A (26.6) 222.1 TAFT		320	RE	(~3.2)	222.5					821KU/KEB
	[C7H17N					222.1	929.	229.9	962.	
										TAFT 78SHE/GOB

Table 1. Gas phase basicities and proton affinities--Continued

	тк	Refer- ence	Relative gas	Gas basicity	g	ected as	Pro affi		Reference
·		base	kcal/mol	kcal/mol		icity 1 kJ/mol	kcal/mol	kJ/mol	
[C ₇ H ₁₀ N ₂ RN 184	•		yl-3-pyridi	namine	222.1**	929.**	229.9**	962.**	
	300			222.1**					76AUE/WEB(2
[C ₅ H ₁₃ N]	(CH	3) ₂ (i-c ₃	н ₇)и ги 99	6-35-0	222.0	929.	229.8	961.	
	320 300	A B	(26.9) (15.4)	222.5 221.1*					TAFT 79AUE/BOW
C ₈ H ₂₁ N8 RN 663			C ₄ H ₉)SiN(CH	3)2	221.9	928.	229.7	961.	
	320	A	(26.3)	221.9					78SHE/GOB
[C ₆ H ₁₃ N]	1-M	ethylpip	eridine RN	626-67-5	221.9	928.	229.7	961.	
	320 320 300	A A B	(26.8) (27.4) (15.3)	222.4 223.0 221.0					TAFT 75ARN 76AUE/WEB
[C ₈ H ₁₁ P]	с ₆ н	5P(CH ₃) ₂	RN 672-66-	2	221.8	928.	229.6	961.	
	320	EE	(2.5)	221.8					82IKU/KEB
C ₅ H ₁₁ N)	(CH	3) 2C=NC2	н ₅ RN 1567	3-04-8	221.7**	927.5**	229.5**	960.**	
	300			221.7**					79AUE/BOW
[C6H13N]	(CH	3) 2C=CHN	(CH ₃) ₂ RN x	xxxx	221.7	928.	229.5	960.	
		(br)		221.7					81ELL/DIX
C5H11N]	сн3	CH=CHN (C	H ₃) ₂ RN 616	3-56-0	221.7	928.	229.4	960.	
		(br)		221.7					81ELL/DIX
[C ₁₂ H ₁₉ N) c ₆	H ₄ N(CH ₃)	2,2-t-C ₄ H ₉	RN 22025-87-2	221.5	927.	229.3	959.	
	320	A	(25.9)	221.5					TAFT
C ₇ H ₁₀ N ₂ RN 568			yl-2-pyridi	namine	221.4*	926.*	229.2*	959.*	
	300			221.4*					76AUE/WEB(2)
C ₆ H ₁₂ N ₂ RN 280			icyclo[2.2.	2]octane	221.2	925.5	229.0	958.	
	320 320 300 300	A E B	(25.1) (3.8) (15.0)	220.6 221.6 220.7 220**					75ARN 74STA/BEA(2) 76AUE/WEB 79AUE/BOW
[СН ₂ 0] н	СОН	RN xxxx	x		221.	925.	229.	958.	
		(br)		221.					82PAU/HEH(2
[C4H6N2]	1-M	ethylimi	dazole RN 6	16-47-7	221.1	925.	228.9	958.	
	320 600	A (br) (Key)	(25.1)	220.7 221.4 220.					TAFT 81ELL/DIX 83MAU
(C ₁₁ H ₁₇ N] 2-	C ₆ H ₁₃ (c-0	C ₅ H ₄ N) RN 1	129-69-7	221.1	925.	228.9	958.	
	425	D	(8.0)	221.1					83MAU/SIE

Table 1. Gas phase basicities and proton affinities--Continued

	тĸ	Refer- ence	Relative gas	Gas basicity	Sele ga	ected	Prot affii		Reference
		base	basicity kcal/mol	=		.city	kcal/mol		
С ₁₁ н ₁₇ к	1] 3-	СН ₃ С ₆ Н ₄ N (C2H5)2 RN	91-67-8	220.9	924.	228.9	958.	
	320	I	(5.5)	220.9					LIA/JAC
(C5H11N)	N-M	ethylpyrr	olidine R	N 120-94-5	220.9	924.	228.7	957.	
	320	A	(25.7)	221.3					75TAF-75ARN
	300	B D	(14.3)	220.0 221.4				73TA	76AUE/WEB AF/TAA-78TAA/WO
[C ₃ H ₉ NO]	NH2	(CH ₂) 3OH	RN 156-87	-6	217.3	909.	228.6	956.5	
,3 ,	330	D	(4.2)	217.3 216.0**					80MAU/HAM 79AUE/BOW
[C ₈ H ₁₉ N]	(i-	C ₄ H ₉) ₂ NH	RN 110-96	-3	220.4	922.	228.6	956.	
	300 320	B A	(14.7) (25.2)	220.4* 220.4					72AUE/WEB 75ARN
(C ₁₁ H ₁₇ 1	N] 4-	сн ₃ с ₆ н ₄ и ((C ₂ H ₅) ₂ RN	613-48-9	220.6	923.	228.6	956.	
		I	(5.2)	220.6					LIA/JAC
^{[C} 12 ^H 19 ^I	N] C6	н ₅ м (С ₃ н ₇)	2 RN 2217	-07-4	220.6	923.	228.6	956.	
	320	I	(5.2)	220.6					LIA/JAC
[C ₇ H ₁₁ N] RN 13			[2.2.2]oct	-2-ene	220.7**	923.**	228.5**	956.**	
	300			220.7**			229.3**	959.**	79AUE/BOW 80HOU/VOG
[C8H19N] (n-	C4H9)2NH	RN 111-92	-2	220.3	922.	228.4	956.	
	300 300 320	B B A	(14.5) (14.6) (24.6)	220.2* 220.3 220.2					76AUE/WEB 72AUE/WEB 75ARN
[C7H9N]	2,6-	Dimethylp	pyridine R	N 108-48-5	220.4	922.	228.2	955.	
	300 320 425	A D	(24.3) (7.8)	219.2* 219.9 220.9					76AUE/WEB(2) 75ARN 83MAU/SIE
[C ₆ H ₁₁ N	0] c-	-C ₅ H ₈ N (2-0	OCH ₃) RN 5	3687-79-9	220.3*	922.*	228.1*	954.*	
	300	В	(14.6)	220.3*					79AUE/BET
[C7FH12	N] 3- RN xx	Fluoro-l	-azabicyclo	[3.2.1]octane	220.3**	922.**	228.1**	954.**	
	300		d.	220.3**					79AUE/BOW
[C9H13N] C ₆ F	1 ₅ Сн ₂ и (Сн	3) ₂ RN 103-	83-3	220.3**	922.**	228.1**	954.**	
	300			220.3**					79AUE/BOW
[C4H9N]	(CH ₃	3) 2NCH=CH	2 RN 5763	-87-1	220.0	920.	227.8	953.	
		(br)		220.0					8lELL/DIX
[C ₉ H ₁₁ N RN 10			xenopyridir	ne	219.9**	920.**	227.7**	953.**	
	300			219.9**					79AUE/BOW

Table 1. Gas phase basicities and proton affinities--Continued

T K Refer- ence		Gas asicity	g	ected as	Pro affi		Reference
base	basicity kcal/mol kc	cal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C ₉ H ₁₁ N] 3,4-Cyclohe RN 36566-06-6	xenopyridine		219.9**	920.**	227.7**	953.**	
300	2	219.9**					79AUE/BOW
$[C_7C1H_{14}N]$ c- C_5H_9N , 2- RN 49665-74-9	-CH ₂ Cl,1-CH ₃		219.8**	920.**	227.6**	952.**	
300	2	219.8**					79AUE/BOW
$[C_{10}H_{15}N]$ $C_{6}H_{5}N(C_{2}H_{5}$	2 RN 91-66-	-7	219.6	919.	227.6	952.	
600 A 325 I		222.0 219.6					73YAM/KEB LIA/JAC
[C ₆ H ₇ NO] 4-Methoxypy:	ridine RN 62	20-08-6	219.8	920.	227.6	952.	
320 D 320 A 320 A 300	(24.8) 2 (24.2) 2	221.7 220.4 219.8 218.8*					72TAA/HEN 81TAA/SUM 75TAF-75ARN 76AUE/WEB(2)
$[C_4H_{11}N]$ $(CH_3)_2(C_2H_5)$	N RN 598-56-	-1	219.7	919.	227.5	952.	
320 A 320 A 300 B	(23.9) 2	220.1 219.5 218.8*					TAFT 75TAF-75ARN 76AUE/WEB
$[C_6H_{15}N]$ $(n-C_3H_7)_2NH$	RN 142-84-7	•	219.7	919.	227.5	952.	
320 A 300 B 300 B 535 C	(13.5) 2 (13.8) 2	19.9 19.2* 19.5					75TAF-83TAF 79AUE/BOW 72AUE/WEB 79MAU
[C ₉ H ₁₃ N] 2-t-Butylpyn	idine RN 594	4-41-2	219.6**	919.**	227.4**	951.**	
300 425 D		18.6** 20.5					79AUE/BOW 83MAU/SIE
$[C_5H_{13}N]$ (C_2H_5) $(i-C_3H_5)$	1 ₇)NH RN 19 9 6	1-27-4	219.4	918.	227.4	951.	
320 A	(23.8) 2	19.4					TAFT
[C7H9N] 2,4-Dimethyl	pyridine RN 1	08-47-4	219.5*	918.*	227.3*	951.*	
300		19.5*					76AUE/WEB(2)
[C ₈ H ₁₁ N] 2-Isopropylp			219.4	918.	227.2	951.	
425 D		19.4	012.0	000			83MAU/SIE
[C ₁₀ H ₂₂ O ₅] CH ₃ (OCH ₂ CH		3-24-8 13.2	213.2	892.	227.2	951.	84SHA/KEB
[C ₃ H ₉ P] (CH ₃) ₃ P RN 5		· - =	219.3	917.5	227.1	950.	O TOMMY KED
320 EE 320 E 320 A	(0.0) 2 (1.6) 2	19.3 19.3 19.0					82IKU/KEB 74STA/BEA 75TAF
[BrC ₇ H ₁₂ N] 3-Bromo-1- octane RN xxxxx			219.3**	917.5**	227.1**	950.**	
300	2	19.3**					79AUE/BOW

Table 1. Gas phase basicities and proton affinities--Continued

		Refer- ence base	basicity	Gas basicity	g	ected as	Pro affi		Reference
			kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[С ₉ н ₁₃ N] С ₆ н	₅ N (CH ₃) (C	2 ₂ H ₅) RN 61	3-97-8	219.3	917.5	227.1	950.	
	600	A	(24.2)	219.3				73YAM/	KEB-78LAU/SAI
[C ₁₀ H ₁₅	N] 3,	5- (CH ₃) ₂ C	6H3N (CH3) 2	RN 4913-13-7	219.0	916.	227.0	950.	
	320	I	(3.6)	219.0					LIA/JAC
[C8H9N]	3,4-	Cyclopent	enopyridin	e RN xxxxx	219.0**	916.**	226.8**	949.**	
	300			219.0**					79AUE/BOW
[C ₉ H ₇ N]	Quin	oline RN	91-22-5		218.7	915.	226.5	948.	
	425 535	(Key)	(8.6)	218.7			225.8		81MCL/CAM 79MAU
[C ₃ H ₈ Si] (CH	3)2Si=CH2	RN 4112	-23-6	218.0	912.	226.4	947.	
	320 320	A (br)	(22.4)	218.0 ~219.0					82PIE/HEH 79PIE/POL
[C5H15N	Si]	(CH ₃) ₃ SiN	(CH ₃) ₂ RN	18135-05-2			226.4	947.	
		(br)							83HEN/FRE
[C5H11N] Pip	eridine	RN 110-8	9-4	218.2	913.	226.4	947.	
	320 300 300 300 300 600 600	A E C B B A	(22.3) (1.0) (8.3) (11.9) (11.5) (23.1) (24.5)	217.9 218.8 218.4 217.4 217.2* 218.2 219.6				75 TA	F-75ARN-83TAI 71BOW/AUE 73AUE/WEB 75AUE/WEB (2) 76AUE/WEB 78LAU/SAL 73YAM/KEB
[C3H7N]	сн ₂ =	С (СН ₃) NH ₂	RN 4427	-28-5	218.5	914.	226.3	947.	
		(Key)		218.5					81ELL/DIX
[C7H9N]	2-Et	hylpyridi	ne RN 100	-71-0	218.4	914.	226.2	946.	
	300 425	D	(5.3)	217.1* 218.4					76AUE/WEB(2) 83MAU/SIE
[C7H9N]	2,3-	Dimethylp	yridine R	N 583-61-9	218.4*	914.*	226.2*	946.*	
	300			218.4*					76AUE/WEB(2)
[C7H9N]	3,4-	Dimethylp	yridine RN	583-58-4	218.4*	914.*	226.2*	946.*	
	300			218.4*	•				76AUE/WEB(2)
0 10	-		Methoxy-4, inane RN 7	6-dimethyl- 735-82-2	218.4	914.	226.2	946.	
	320	(Key)		218.4					80HOD/HOU
[C ₁₂ H ₂₄ tetra	_		oicyclo[4.4 058-67-8	-4]-	218.9	916.	226.0	946.	
	320	A	(23.3)	218.9					81ALD/ARR
[C7H9N]	2,5-	Dimethylp	yridine RN	589-93-5	218.2*	913.*	226.0*	946.*	
				218.2*					76AUE/WEB(2)

Table 1. Gas phase basicities and proton affinities--Continued

	тк	Refer- ence base	Relative gas	Gas basicity	g	ected as	Pro affi		Reference
		Dase	basicity kcal/mol	kcal/mol	kcal/mo	icity l kJ/mol	kcal/mol	kJ/mol	
, ,] Pyr 579-9		ethoxymeth	yl	218.2**	913.**	226.0**	945.5**	
	300			218.2**					79AUE/BOW
[C ₅ H ₉ NO] c-C	4H6N(2-0C	H ₃) RN 526	4-35-7	218.1	912.5	225.9	945.	
	300	В	(12.4)	218.1					79AUE/BET
[C2H8N2] 1,2	-Diaminoe	thane R	N 107-15-3	219.2	917.	225.9	945.	
	298 330 300	A D C	(24.1) (3.4) (6.5)	219.2 216.6 216.6					73YAM/KEB 80MAU/HAM 73AUE/WEB
[C4111N] (C ₂ 1	H ₅) 2NH	RN 109-89	- 7	217.7	911.	225.9	945.	, , , , , , , , , ,
	320 320 320 300 300 300 550	A A A B B B	(22.0) (21.6) (22.0) (12.0) (11.7) (11.2) (7.6)	217.6 217.2 217.6 217.7 217.4 216.9*	e e				83TAF 75TAF-75ARN 72ARN/JON 72AUE/WEB 75AUE/WEB (2 76AUE/WEB 79MAU
[C9H7N]	Isoqı	uinoline	RN 119-6	5-3	218.1	912.	225.9	945.	
	535	С	(8.0)	218.1					79MAU
[C ₉ H ₁₃ N] 4-t-	-Butylpyr	idine RN	3978-81-2	218.1	913.	225.9	945.	
	300			218.1*					76AUE/WEB(2)
[C7H7N]	3,4-0	Cyclobute	nopyridine	RN xxxxx	218.1**	912.**	225.9**	945.**	
	300			218.1**					79AUE/BOW
[C ₁₁ H ₁₅	N] 1-	-Phenylpi	peridine	RN 4096-2-2	219.5	918.	225.8	945.	·
	320	A	(23.9)	219.5					TAFT
[C ₈ H ₉ N]	2,3-0	Cyclopento	enopyridin	e RN xxxxx	218.0**	912.**	225.8**	945.**	
	300			218.0**					79AUE/BOW
	_	-Chloro-1-	-azabicyclo	0[2.2.2]-	218.0**	912.**	225.8**	945.**	,
	300			218.0**					79AUE/BOW
[C ₉ H ₁₃ N	4-CF	1 ₃ C ₆ H ₄ N (Ci	H ₃) ₂ RN 9	9-97-8	217.6	910.	225.6	944.	
	320	I	(2.2)	217.6					LIA/JAC
{С ₁₀ С1н	L4 ^{N] 4}	1-c1c6114N	(C ₂ 11 ₅) ₂ Ri	N 2873-89-4	217.8	911.	225.6	944.	
	320	I	(-2.4)	213.0					LIA/JAC
[C ₇ H ₉ N]	3,5-0	Dimethylpy	yridine RN	591-22-0	217.7*	911.*	225.5*	943.*	
	300	В	(12.0)	217.7*				•	76AUE/WEB
[C ₆ H ₇ NS] RN 22!			o)-pyridine	e	217.7**	911.**	225.5**	943.**	
	300			217.7**					79AUE/BOW
[C ₁₁ H ₁₂ 1	1202]	L-Tryptop	ohan RN 54	1 -12-6	217.6	910.	225.4	943.	
		A	(22.0)	217.6					83MCI

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence	Relative gas	Gas basicity		ected as	Prot affir		Reference
·		base	basicity kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C ₆ H ₁₃ N]	n-C	3H7CH=NC	2 ^H 5 RN 16	11-12-7	217.5**	910.**	225.3**	943.**	•
	300			217.5**					79AUE/BOW
[C6H7N]	4-Me	thylpyri	dine RN 10	8-89-4	217.4	909.	225.2	942.	
	320 320 320	D A A	(+5.4) (21.1) (21.4)	218.4 216.7 217.0					72TAA/HEN 83TAF 75TAF-75ARN
[C4H9N]	Pyrr	olidine	RN 123-75	-1	217.3	909.	225.2	942.	
	320 320 300 320	A A B E	(21.3) (21.4) (10.4) (-0.3)	216.9 217.0 216.1* 217.5				8	3TAF-81TAA/SUN 75TAF-75ARN 76AUE/WEB 71BOW/AUE
[C3H9N]	(CH ₃) ₃ N RN	75-50-3		217.3	909.	225.1	942.	
	320 320 300 300 300 320 320 320 320	E E B B A A A A	(0.0) (0.0) (0.0) (11.5) (10.7) (10.8) (21.9) (21.4) (21.8) (22.0) (4.4) (23.3)	217.3 217.3 217.3 217.2 216.4 216.5* 217.4 216.9 217.3 217.6 217.5 218.4				72HE1	74STA/BEA 74STA/BEA(2) 71BOW/AUE 72AUE/WEB 75AUE/WEB(2) 76AUE/WEB TAFT 75TAF-75ARN 1/TAA-72ARN/JON 83MCI-83TAF 80MAU/HAM 72BRI/YAM
[C6H7N]	2-Me	thylpyri	dine RN 10	9-06-8	217.2	909.	225.0	942.	•
	320 425	A D	(21.5) (4.1)	217.1 215.9* 217.2					TAFT 76AUE/WEB(2) 83MAU/SIE
			Methoxy-cis,	cis-4,6- nane RN 4182	216 1-91-4	904	225	941	,
	320	A		216					80HOD/HOU
[C ₁₀ H ₁₃	N] N-	Phenylpy	rrolidine R	N 4096-21-3	216.9	907.	224.7	940.	
	320	A	(21.3)	216.9					TAFT
[C6H11N) (CH	₂ =CHCH ₂)	2 ^{NH} RN 124	-02-7	216.9	907.	224.7	940.	
	320	A	(21.3)	216.9					TAFT
[C ₉ H ₇ NO] Qui	noline-l	oxide RN l	613-37-2	216.8	907.	224.6	940.	
	526		(6.7)	216.8					79MAU
[C7H9N]	4-Et	hylpyrid	line RN 53	6-75-4	216.8**	907.**	224.6**	940.**	•
	300			216.8*					76AUE/WEB(2
[С9 ^Н 13 ^N] 3-C	н ₃ С _б н ₄ N ((CH ₃) ₂ RN 12	1-72-2	216.7	907.	224.5	939.	
	320	F	(14.3)	216.7					77POL/DEV
			I(CH ₃)COOCH ₃ ne methyl es	ter) RN xxxx	211. x	883.	224.5	939.	
		(Key)		211.					83MAU
[C4H6N2] 4-M	ethylimi	dazole RN 8	22-36-6	216.6	906.	224.4	939.	
	600	(Key)		216.6					UAME8

Table 1. Gas phase basicities and proton affinities--Continued

	Gas sicity	Sele ga basi	s	Pro affi		Reference
	al/mol k			kcal/mol	kJ/mol	
[C ₄ H ₁₀ N ₂] Piperazine RN 110-85-0	2	16.4	905.	224.2	938.	
300 C (6.3) 21	16.4					73AUE/WEB
[C ₆ H ₇ N] 3-Methylpyridine RN 108-9	99-6 2	16.2	905.	224.1	938.	
300 B (9.3) 21	16.2 15.0* 15.0* 17.3					TAFT 76AUE/WEB 76AUE/WEB(2 83MAU
[C8H18O4] CH3(OCH2CH2)3OCH3 RN 112	2-49-2 2	10.8	882.	224.1	938.	
300 (Key) ~21						83MAU 84SHA/BLA
<pre>[C7ClH10N] 3-Chloro-1-azabicyclo[2. oct-2-ene RN xxxxx</pre>	.2.2]- 2	216.2**	904.5**	224.0**	937.**	
21	16.2**				-	79AUE/BOW
$[C_{10}H_{17}NO]$ cis-3-Amino-2-twistanol (Key) 21	RN xxxxx 2	216.2	904.5	224.0	937.	83HOU/RUF
[C ₈ H ₁₅ NO] cis-3-Aminobicyclo[2.2.2] ol RN 17997-65-8]octan-2- 2	216.1	904.	223.9	937.	
(Key) 21	16.1					83HOU/RUF
[C ₃ H ₈ Pb] (CH ₃) ₂ Pb=CH ₂ RN 82065-01-	-8 2	216.1	904.	223.9	937.	
320 A (20.5) 23	16.1					82PIE/HEH
[C ₇ H ₉ N] 3-Ethylpyridine RN 536-78	8-7 2 16.1*	216.1*	904.*	223.9*	937.*	76AUE/WEB(2
$[C_{10}H_{10}N_2]$ 1,8-Diaminonaphthalene RN 479-27-6	2	216.2	904.5	223.8	936.	
600 A (21.1) 21	16.2					78LAU/SAL
[C ₄ H ₅ N ₃ O] Cytosine RN 71-30-7	2	216.0	904.	223.8	936.	
535 C (5.9) 21 (br) 72	16.0 15					79MAU 75WIL/MCC
$[C_5H_6N_2]$ 2-Pyridinamine RN 504-29	9-0 2 16.0*	216.0*	904.*	223.8*	936.*	79AUE/BOW
[C ₁₂ H ₈ N ₂] Phenazine RN 92-82-0	2	216.6	906.	223.7	936.	
514 C (6.5) 23	16.6					79MAU
[C ₁₀ H ₂₀ O ₅] 1,4,7,10,13-Pentaoxacyc decane (15-Crown-5) RN 33100-2		212.5	889.	223.6	935.	
	12. 12.5					83MAU 84SHA/BLA
[C ₆ H ₇ NO] 3-Methoxypyridine RN 72	95-76-3 2	215.7	902.	223.6	935.	
	16.5 14.7*					TAFT 76AUE/WEB(2
[C ₅ H ₅ N ₅] Adenine RN 73-24-5	2	215.7	902.	223.5	935.	
550 C (5.6) 2 (br) ~2	15.7 15					79MAU 75WIL/MCC

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence	Relative gas	Gas basicity		ected as		ton nity	Reference
		base	basicity kcal/mol	kcal/mol	bas	icity	kcal/mol	_	
[C3H7N]	Azet	idine	RN 503-29-	7	215.7	902.	223.5	935.	
[C ₈ H ₁₁ N	300 300 300 3 C ₆ H	В В Е 15N (СН ₃) 2	(9.1) (8.8) (-2.1) RN 121-69	214.8 214.5* 215.3	215.4	901.	223.4	935.	75AUE/WEB(2) 76AUE/WEB 71BOW/AUE
	320 320 320 600	I A A F A	(0.0) (19.9) (19.8) (12.5) (21.7)	215.4 215.5 215.4 215.4 216.8				73YA	LIA/JAC 75TAF-83TAF 83MCI 77POL/DEV M/KEB-78LAU/SAL
[C7H7N]	2,3-	-Cyclobut	enopyridine	RN xxxxx	215.5**	902.**	223.3**	934.**	4
	300			215.5**					79AUE/BOW
[C3H9NO] CH ₃	осн ₂ сн ₂ и	н ₂ RN 109	-85-3	212.3*	888.*	223.3*	934.*	
	300	С	(2.2)	212.3*					73AUE/WEB
[C7H7N]	4-Vi	nylpyrid	ine RN 100	-43-6	215.4**	901.**	223.2**	934.**	•
				215.4**					79AUE/BOW
[C8H6N2] Cir	noline	RN 253-66-7		215.4	901.	223.2	934.	
	535	С	(5.3)	215.4					79MAU
[C ₁₀ H ₁₀	Ni] N	i(C ₅ H ₅) ₂	RN 1271-28	-9	216.	904.	223.	933.	
	320 320	(Key) A	(19.1)	216. 214.7					76COR/BEA 81STE/BEA
[C5H5N5	0] Gt	anine F	RN 73-40-5		~215	~899	~223	~933	
		(br)		~215					75WIL/MCC
[C6H6N4] 6-1	Methylpur	ine RN 200	4-03-7	~215	~899	~223	~933	
		(br)		~215					75WIL/MCC
[C3H9N]	(CH	3) (C ₂ H ₅) N	IH RN 624-	78-2	215.1	900.	222.8	932.	
	320 320 300	A A B	(19.8) (19.1) (9.1)	215.3 214.7 214.8*					TAFT 75TAF-75ARN 76AUE/WEB
[C4H9N]	сн ₃ с	CH=NC2H5	RN 1190-79	9-0	214.9	899.	222.7	932.	*
	300	В	(9.2)	214.9					75AUE/WEB(2)
[C6H8N2] 1,3	B-C ₆ H ₄ (NE	1 ₂) ₂ RN 10	08-45-2	214.7	898.	222.4	930.5	
	600 600	F A	(12.2) (19.7)	214.7 214.8					81LAU/NIS 78LAU/SAL
[C ₉ H ₁₁ N	03] [L-Tyrosin	ne RN xxxx	х	214.5	897.	222.3	930.	
		λ	(18.9)	214.5			-		83MCI
[C ₅ H ₁₃ N] t-0	5 ^H 11 ^{NH} 2	RN 594-39-8	3	213.9*	895.*	222.3*	930.*	
	300	В	(8.2)	213.9*					76AUE/WEB

Table 1. Gas phase basicities and proton affinities--Continued

TI	ence	Relative gas	Gas basicity	g	ected as	Pro affi		Reference
	base	basicity kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C ₁₀ H ₁₉ NO] RN xxxxx	4-Aminode	cahydro-3-n	aphthalenol	214.3	897.	222.1	929.	
	(Key)		214.3					83HOU/RUF
[C ₆ H ₇ NS] 2- RN 18438-		io)-pyridin	е	214.2	896.	222.0	929.	
300) в	(8.5)	214.2 214.2*					79AUE/BET 76AUE/WEB(2)
[C ₇ H ₆ O] 4- 1	Methylene-	2,5-cyclohe	xadiene-l-on	RN 502-	87-4	~222**	~929**	
	(br)							77DIT/NIB
[C ₇ H ₁₁ NO] : RN 3731-:		lo[2.2.2]oc	tan-3-one	214.1**	896.**	221.9**	928.**	
			214.1**					79AUE/BOW
[C ₆ H ₇ NO] 2	-Methoxypy	ridine RN	1628-89-3	214.1	896.	221.9	928.	
320 300		(18.8) (7.8)	214.4 213.5 213.5*					76COO/KAT 79AUE/BET 76AUE/WEB(2)
[C ₆ H ₁₄ O ₂] (СН ₃ 0 (СН ₂) 4	OCH ₃ RN 131	79-96 -9	209.0	874.	221.8	928.	
300) A	(13.4)	209.0					84SHA/BLA
[C7H16O2]	Сн ₃ 0 (Сн ₂) ₅	OCH ₃ RN 111	-89-7	208.8	874.	221.8	928.	
300) A	(13.2)	208.8					84SHA/BLA
[C8H11N] C	5 ^H 5 ^{NHC} 2 ^H 5	RN 103-69-5		214.0	895.	221.8	928.	
600 42		(18.4)	214.0 218.8				73YA	M/KEB-78LAU/ 81MCL/CAM
	3,3-Diflu ctane RN	oro-1-azabi xxxxx	cyclo-	214.0**	895.**	221.8**	928.**	
			214.0**					79AUE/BOW
	icyclo[2.2 Aminonorbo	.1]heptan-2 rnane) RN	-amine, 7242-92-4	213.3**	892.**	221.7**	927.**	
			213.3**					79AUE/BOW
. 25	icyclo[2.2 -Aminonorb	.1]heptan-2 ornane) RN	-amine, 31002-73-0	213.3**	892.**	221.7**	927.**	
			213.3**					79AUE/BOW
[C ₈ H ₁₆ O ₄] cyclodode	1,4,7,10- ecane (12-		N 294-93-9	211.3	884.	221.6	927.	
300 300			211.0 211.3					83MAU 84SHA/BLA
[C3H7N] N-	-Methylazi	ridine RN l		213.8	894.	221.6	927.	•
300	_	(8.1)	213.8					75AUE/WEB(2)
[C II NO]	trans-3-A	mino-2-twis	tanol	213.7	894.	221.5	927.	
$(C_{10}^{\Pi_1}7^{NO_1})$								

Table 1. Gas phase basicities and proton affinities--Continued

	тк	Refer- ence	Relative gas	Gas basicity	ga		Prot affir		Reference
		base	basicity kcal/mol	kcal/mol		city kJ/mol	kcal/mol	kJ/mol	
IC_H11NO	o _s s)	L-Methion	nine RN 59-	51-8	213.6	894.	221.4	926.	
. 2 11	2 -	A	(18.0)	213.6					83MCI
(CaHaNO)	NH.	(CH ₂) ₂ OH	RN 141-4		213.4	893.	221.3	926.	
	330	D	(0.3)	213.4					80MAU/HAM
[CcH12N]		6 ^H 11 ^{NH} 2	RN 108-9		213.4	893.	221.2	925.5	,
613	320 300 600	A B A	(17.5) (7.2) (19.5)	213.1 212.9* 214.6					'AF-75ARN-83TAI 76AUE/WEB 73YAM/KEB
(CeHcNo			dine RN 46		213.2*	892.*	221.0*	925.*	7 3 2 1 1 1 7 1 2 2
- 5-6-2-				213.2*	.	•			76AUE/WEB(2)
[CcH- 405	sil c	Ha=C(CHa)	OSi(CHa)a	RN 1833-53-0	213.	891.	221.	925.	, (2)
1-6.14	, ·	(br)	(0.13/3	213.	2200	0,220		, ,	82HEN/WEI
[C4H11N]	l t-C		RN 75-64-9		213.0	891.	220.8	924.	•
	320 320 300 300 514 550	A A B B C	(17.1) (17.6) (17.8) (7.2) (7.0) (3.3) (16.9)	213.0 213.2 213.4 212.9* 212.7 213.4 212.1				72HEN/	75TAF-75ARN /TAA-72ARN/JON 83MCI-83TAF 76AUE/WEB 72AUE/WEB 79MAU 80MAU
[C5H5N]	Pyri	dine RN	110-86-1		213.1	892.	220.8	924.	
	320 320 300 300 520 550 600	D D A A B B C A A	(0.0) (0.0) (0.0) (17.7) (17.0) (6.4) (6.9) (3.0) (17.3) (17.6) (18.6)	213.1 213.1 213.3 213.3 212.6 212.1 212.6* 213.1 212.5 212.7 213.7					83MAU/SIE 80MAU/HAM 83MAU 83TAF 75TAF-75ARN 75AUE/WEB(2) 76AUE/WEB 79MAU 80MAU 78LAU/SAL 72BRI/YAM
[C3H7N]	(CH ₃	3) 2C=NH	RN 38697-	-07-3	212.9	891	220.7	923	
		(br)		212.9					81ELL/DIX
[C ₁₀ H ₂₃	N] n-	-(C ₁₀ H ₂₁)1	NH ₂ RN 2016	5-57-1	212.3**	888.**	220.7**	923.**	
				212.3**					79AUE/BOW
[C3H9O3	P] P	(OCH ₃) ₃	RN 121-45-9)	213.0	891.	220.6	923.	
	300	(Key)		213.0					80HOD/MCD
[С ₉ Н ₁₂ О	3l 1,	3.5-C ₆ H ₃	(OCH ₃) ₃ RN	621-23-8	213.1	892.	220.6	923.	
	320	A	(17.5)	213.1					TAFT
[C ₈ H ₁₅ N octan			inobicyclo 35-14-6	[2.2.2]-	212.8	890.	220.6	923.	
		(Key)		212.8					83HOU/RUF

Table 1. Gas phase basicities and proton affinities--Continued

		T K	ence	Relative gas	Gas basicity	g	ected	Prot affi		Reference
320			base	basicity kcal/mol	kcal/mol			kcal/mol	kJ/mol	
320	[C2H7N]	(СН3) ₂ NH R	N 124-40-3		212.8	890.	220.6	923.	
[C4H1N] sec-C4H9NH2 RN 13952-84-6 211.7 886. 220.5 922. 300 B (6.4) 212.1* 76ANUE/ME 72AUE/ME 72AUE/		320 320 300 300 300	A A B B B	(16.8) (16.8) (16.8) (6.8) (6.5) (6.6) (18.3)	212.4 212.4 212.5 212.1 212.3* 213.4				72HEN/	75TAF-75ARN 'TAA-72ARN/JON 83MCI 72AUE/WEB 75AUE/WEB 76AUE/WEB 72BRI/YAM
300 B (6.4) 212.1* 76AUE/WE 72AUE/WE 72A	[C4H11N] sec	_			211.7	886.	220.5	922.	oumau/ nam
County C	- 4 11	300	В	(6.4)	212.1*					76AUE/WEB 72AUE/WEB
[C ₅ H ₅ NO] Pyridine-N-oxide RN 694-59-7 213.3 892. 220.3 922. 79MAU 550	[C ₈ H ₁₉ N] n-(С ₈ Н ₁₇) NH	1 ₂ RN 111-86	-4	212.0**	887.**	220.4**	922.**	
TAFT TSTAFT TST					212.0**					79AUE/BOW
[C ₉ H ₉ N] (HCCCH ₂) ₃ N RN 6921-29-5 212.4 889. 220.2 921. 320 A (16.6) 212.2 75TAF-75 [C ₆ H ₇ NO] 1-Methy1-2-pyridinone RN 694-85-9 212.2 888. 220.2 921. RN 694-85-9 300 B (6.5) 212.2 79AUE/BE 76COO/RA [C ₅ H ₉ NO ₂] c-C ₄ H ₇ NH(2-COOH) 212.6 212.4 889. 220.2 921. (L-Proline) RN 609-36-9 370 A (20.1) 215.7 600 A (11.0) 212.4 888. 220.0 920. RN xxxxx (Key) 212.2 888. 220.0 920. [C ₁ H ₁ NO] trans-3-Amino-2-twistanol 212.2 888. 220.0 920. RN xxxxx (Key) 212.2 888. 220.0 920. [C ₁ H ₂ NO] 3-Amino-tricyclo[7.3.0.0 ⁴ ,8] 212.2 888. 220.0 920. GOdecan-2-ol RN xxxxx (Key) 212.2 888. 220.0 920. [C ₁ H ₈] Azulene RN 275-51-4 212.5 889. 220. 921. 320 A (22.6) 218.2 320 A (27.6) 218.1 550 A (17.3) 212.5 (1983, value reconfirmed) 77WOL/AE 80MAU [C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7 212.1 887. 219.9 920. 320 A (16.8) 212.4 75FAF-75 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.	[C5H5NO] Pyr	idine-N-	oxide RN 69	4-59-7	213.3	892.	220.3	922.	
320 A (16.6) 212.2 320 A (16.0) 211.6 [C ₆ H ₇ NO] 1-Methyl-2-pyridinone RN 694-85-9 300 B (6.5) 212.2 320 D (-1.0) 212.6 [C ₅ H ₉ NO ₂] c-C ₄ H ₇ NH(2-COOH) (L-Proline) RN 609-36-9 370 A (20.1) 215.7 600 A (11.0) 212.4 [C ₁₀ H ₁₇ NO] trans-3-Amino-2-twistanol RN xxxxx (Key) 212.2 [C ₁₂ H ₂₁ NO] 3-Amino-tricyclo[7.3.0.0 ⁴ ,8] dodecan-2-ol RN xxxxx (Key) 212.2 [C ₁₀ H ₈] Azulene RN 275-51-4 212.5 889. 220.9 320 A (23.7) 219.3 320 A (22.6) 218.2 320 A (17.3) 212.5 (1983, value reconfirmed) [C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7 320 A (16.8) 212.4 320 A (16.8) 212.4 320 A (16.8) 212.5 (1983, value reconfirmed) [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.		550	С	(3.2)	213.3					79MAU
320 A (16.0) 211.6 75TAF-75 [C ₆ H ₇ NO] 1-Methyl-2-pyridinone 212.2 888. 220.2 921. RN 694-85-9 300 B (6.5) 212.2 79AUE/BE 76COO/KR [C ₅ H ₉ NO ₂] c-C ₄ H ₇ NH (2-COOH) 212.6 212.4 889. 220.2 921. (L-Proline) RN 609-36-9 370 A (20.1) 215.7 83MCI 73YAM/KE [C ₁₀ H ₁₇ NO] trans-3-Amino-2-twistanol 212.2 888. 220.0 920. RN xxxxx (Key) 212.2 888. 220.0 920. [C ₁₂ H ₂₁ NO] 3-Amino-tricyclo[7.3.0.0 ⁴ ,8] 212.2 888. 220.0 920. dodecan-2-ol RN xxxxx (Key) 212.2 888. 220.0 920. [C ₁₀ H ₈] Azulene RN 275-51-4 212.5 889. 220. 921. 320 A (23.7) 219.3 320 A (21.2) 218.1 218.1 218.1 550 A (17.3) 212.5 (1983, value reconfirmed) 75WOL/HR 77WOL/AE 80MAU [C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7 212.1 887. 219.9 920. 320 A (16.8) 212.4 75HT-75 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.	[C ₉ H ₉ N]	(HCC	сн ₂) ₃ N	RN 6921-29-	5	212.4	889.	220.2	921.	
RN 694-85-9 300 B (6.5) 212.2 320 D (-1.0) 212.6 [C ₅ H ₉ NO ₂] c-C ₄ H ₇ NH (2-COOH) (L-Proline) RN 609-36-9 370 A (20.1) 215.7 600 A (11.0) 212.4 [C ₁₀ H ₁₇ NO] trans-3-Amino-2-twistanol RN xxxxx (Key) 212.2 [C ₁₂ H ₂₁ NO] 3-Amino-tricyclo[7.3.0.0 ⁴ ,8] 212.2 888. 220.0 920. Godecan-2-ol RN xxxxx (Key) 212.2 [C ₁₀ H ₈] Azulene RN 275-51-4 320 A (23.7) 219.3 320 A (22.6) 218.2 320 ZZ (18.1) 218.1 550 A (17.3) 212.5 (1983, value reconfirmed) [C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7 320 A (16.8) 212.4 320 A (16.2) 211.8 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.										TAFT 75TAF-75ARN
Companies Comp	0 /			-pyridinone		212.2	888.	220.2	921.	
CL-Proline RN 609-36-9 370										79AUE/BET 76COO/KAT
[Cl ₁₀ H ₁₇ NO] trans-3-Amino-2-twistanol 212.2 888. 220.0 920. RN xxxxx (Key) 212.2 888. 220.0 920. [Cl ₁₂ H ₂₁ NO] 3-Amino-tricyclo[7.3.0.0 ⁴ ,8] 212.2 888. 220.0 920. dodecan-2-ol RN xxxxx (Key) 212.2 888. 220.0 920. [Cl ₁₀ H ₈] Azulene RN 275-51-4 212.5 889. 220. 921. 320 A (23.7) 219.3 320 A (22.6) 218.2 320 ZZ (18.1) 218.1 550 A (17.3) 212.5 (1983, value reconfirmed) [C ₂ H ₈ N ₂] (CH ₃) 2NNH ₂ RN 57-14-7 212.1 887. 219.9 920. 320 A (16.8) 212.4 320 A (16.2) 211.8 75TAF-75 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.		_				212.4	889.	220.2	921.	
(Key) 212.2 888. 220.0 920. Codecan-2-ol RN xxxxx (Key) 212.2 888. 220.0 920. Codecan-2-ol RN xxxxx (Key) 212.2 889. 220.0 921. Should be subjected by the subject of the s										83mCI 73YAM/KEB
[C ₁₂ H ₂₁ NO] 3-Amino-tricyclo[7.3.0.0 ⁴ , ⁸] 212.2 888. 220.0 920. dodecan-2-ol RN xxxxx (Key) 212.2 889. 220. 921. [C ₁₀ H ₈] Azulene RN 275-51-4 212.5 889. 220. 921. 320 A (23.7) 219.3 75wOL/HA 75wOL/HA 320 ZZ (18.1) 218.1 550 A (17.3) 212.5 (1983, value reconfirmed) 77wOL/AE 80MAU [C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7 212.1 887. 219.9 920. 320 A (16.8) 212.4 320 A (16.2) 211.8 7AFT 75TAF-75 (C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.			rans-3-A	Amino-2-twis	tanol	212.2	888.	220.0	920.	
dodecan-2-ol RN xxxxx $ (Key) \qquad 212.2 \qquad 83HOU/RU $ $ [C_{10}H_8] \text{ Azulene RN 275-51-4} \qquad 212.5 889. 220. 921. $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			(Key)		212.2					83HOU/RUF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$.0.04,8]	212.2	888.	220.0	920.	
320 A (23.7) 219.3 320 A (22.6) 218.2 320 ZZ (18.1) 218.1 550 A (17.3) 212.5 (1983, value reconfirmed) [C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7 212.1 887. 219.9 920. 320 A (16.8) 212.4 320 A (16.2) 211.8 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.			(Key)		212.2					83HOU/RUF
320 A (22.6) 218.2 75WOL/HA 77WOL/AB 77WOL/AB 77WOL/AB 77WOL/AB 77WOL/AB 80MAU	[C ₁₀ H ₈]	Azul	ene RN 2	275-51-4		212.5	889.	220.	921.	
320 A (16.8) 212.4 320 A (16.2) 211.8 TAFT 75TAF-75 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.		320 320	A ZZ	(22.6) (18.1)	218.2 218.1	83, value	reconfir	ned)		75WOL/HAR 77WOL/ABB
320 A (16.8) 212.4 320 A (16.2) 211.8 TAFT 75TAF-75 [C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8 212.0 887. 219.8 920.	[C2H8N2] (CI	1 ₃) 2 ^{NNH} 2	RN 57-14-7		212.1	887.	219.9	920.	
4 0 2 3		320	A	(16.8)						TAFT 75TAF-75ARN
A (16.4) 212.0 83MCI	[C4H8N2	03] [-Asparaç	gine RN 31	30-87-8	212.0	887.	219.8	920.	
·			A	(16.4)	212.0					83MCI

er	fer- nce	Relative gas basicity kcal/mol	Gas basicity	Selected gas		Proton affinity		Referenc
ba	ase ———		kcal/mol	kcal/mol	city kJ/mol	kcal/mol	kJ/mol	
[C3H4N2] Imidazo	ole R	N 288-32-4		212.0	887.	219.8	920.	
600	D	(-1.1)	212.0					83MAU
[C ₄ H ₉ O ₃ P] 2-Meth phosphorinane			-	211.7	886.	219.4	918.	
320 (1	Key)		211.7					80HOD/H
[C4H9NO] Morpho	line	RN 110-91-	8	211.6	885.	219.4	918.	
. 300	С	(1.5)	211.6					73AUE/W
[C ₆ H ₁₄ O ₃] CH ₃ (O	Сн ₂ Сн ₂) ₂ OCH ₃ RN	111-96-6	207.4	868.	219.4	918.	
	Key) A	(10.9)	207.4 206.5					83MAU 84SHA/E
[C ₅ H ₁₃ N] neo-	C5H11N	H ₂ RN 581	3-64-9	211.7	886.	219.3	917.5	
	A B	(16.1) (6.1)	211.6 211.8					TAFT 76AUE/W
$[C_5H_4N_4]$ Purine	RN 1	20-73-0		211.5	885.	219.3	917.5	
	C br)	(+1.4)	211.5 ~209					79MAU 75WIL/N
$[C_6H_{11}NO]$ c- C_5H	₈ N(2-0)1-CH ₃ RN	931-20-4	211.5	885.	219.3	917.5	
	B A	(5.8) (15.6)	211.5 211.2 209.1**					79AUE/E 76COO/E 79AUE/E
[C ₃ H ₇ N] 2-Methy	laziri	dine RN 7	5-55-8	211.4**	884.**	219.2**	917.**	
			211.4**					79AUE/E
[C2H5N] CH2=CHN	H ₂ RN	593-67-9		211.3	884.	219.1	917.	
. (Key)		211.3					81ELL/
[C7H17N] n-C7H1	5 ^{NH} 2	RN. 111-68-	2	211.2	884.	219.0	916.	
300	С	(1.1)	211.2					73AUE/V
$[C_6H_6N]$ C_6H_5NH	radica	1 RN xxxx	x	211	883	219	916	
(br)		211					82MAU
[C ₆ ClH ₆ N] 2-Chl RN 18368-63-3		methylpyri	dine	211**	883*	219**	916**	
			211**					79AUE/
[Mg ₂] Mg ₂ RN 2	9904-7	9-8				219 <u>+</u> 7	916.	
(Key)							77PO/P

Table 1. Gas phase basicities and proton affinities--Continued

	T K Reference		Relative gas	Gas basicity	Selected gas		Prot affi	Reference	
		base	basicity kcal/mol	kcal/mol_		icity l kJ/mol ————	kcal/mol	kJ/mol	
			heptatriene	-1-one	212	887	219	918	
(Trop	one) i	RN 539-8 (br) (br)	0-0	212			226**	945**	77DIT/NIB 83CAS/FRE
[C ₅ H ₁₃ N] n-C	5 ^H 11 ^{NH} 2	RN 110-58-	7	211.1	883.	218.9	916.	
	300 535	B C	(5.6) (+0.8)	211.3 210.9					79AUE/BET 79MAU
[C ₆ H ₁₃ N	0 ₂] L	-Isoleuc	ine RN 73-3	2- 5	211.1	883.	218.9	916.	
		A	(15.6)	211.1					83MCI
[C ₆ H ₁₅ N] n-C	6 ^H 13 ^{NH} 2	RN 111-26-	2	211.1	883.	218.9	916.	
	300	С	(1.0)	211.1 211.7**					73AUE/WEB 79AUE/BOW
[C4H11N] i-C	4 ^H 9 ^{NH} 2	RN 78-81-9		211.1*	883.*	218.8*	915.*	
	300 300 320	B B A	(5.4) (4.8) (17.1)	211.1* 210.5 212.7					76AUE/WEB 72AUE/WEB 75ARN
[C3H7NO	2] Sa	rcosine	RN xxxxx		210.9	882.	218.7	915.	
		A	(15.3)	210.9					83MCI
[C3H9N]	i-c ₃	^H 7 ^{NH} 2 F	RN 75-31-0		211.0	883.	218.6	915.	
	320	Α	(15.4)	211.0		•	75TAF-72HE	N/TAA-72	ARN/JON-83
	300	В	(5.3)	211.0*					76AUE/WEB
	300 600	B D	(4.9) (-3.5)	210.6 209.6					72AUE/WEB 83MAU
[C4H9NO	3] L-	Threonin	ne RN xxxxx		210.8	882.	218.6	915.	
		A	(15.2)	210.8					83MCI
[C ₆ C1H ₆ RN 36			-methylpyri	dine	210.8**	882.**	218.6**	915.**	
KN JO	70-02	-4		210.8**					79AUE/BOW
[C5H10N	203]	L-Glutan	nine RN 585	-21-7	210.6	881.	218.4	914.	
		A	(15.0)	210.6			٠	4	83MCI
$[C_4H_{11}N$. , .	RN 109-73-9		210.6	881.	218.4	914.	
	320	Α	(14.6)	210.2					83TAF
	320	A	. (14.5)	210.1					75TAF-75A
	200	A	(14.8)	210.4			•		83MCI
	300 300	B	(4.9) (4.5)	210.6* 210.2	•				76AUE/WEB 72AUE/WEB
	515	Č	(0.5)	210.6					79MAU
[C ₆ H ₉ N]	2,5	-Dimethy	ylpyrrole RN	625-84-3	210.6	881.	218.4	914.	
	600	D	(-2.5)	210.6					83MVA

тк	Refer- ence base	Relative gas basicity	Gas basicity	g	ected as	Pro affi		Reference
	base	kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C4H9N] CH2	=С (СН ₃) СН	2NH ₂ RN 28	378-14-0	209.6**	877.**	218.2**	913.**	70.10.400.
		. 100 61 0	209.6**	222.2		010.1	.1.0 "	79AUE/BOW
[C ₇ H ₉ N] C ₆ 1			010 0	210.3	880.	218.1	912.5	70
	Α	(15.1)	210.3					I/YAM-78LAU/SAI
(L-Leucin		н ₂ сн (NH ₂) сос 1-90 - 5	ЭН	210.3	879.	218.1	912.5	
500	F A	(6.0) (14.7)	208.5 210.3					79MAU/HUN 83MCI
[C ₁₀ H ₁₀ Ru]	(C5H5) 2Ru	RN 1287-13	3-4			218**	912**	
320	A	(14 <u>+</u> 2)						81STE/BEA
BrC ₅ H ₄ N] P	yridine,4	-Br RN 1120	0-87-2	210.1*	879.*	217.9*	912.*	
			210.1*					76AUE/WEB(2)
[C3H9N] n-C	3 ^H 7 ^{NH} 2	RN 107-10-8		210.1	879.	217.9	912.	
535 300 320 320 300 300	C A A A B B	(0.0) (0.0) (14.1) (13.9) (14.4) (4.4) (3.9)	210.1 210.1 209.7 209.5 210.0 210.1* 209.6					79MAU 73AUE/WEB 83TAF 75TAF-75ARN 83MCI 76AUE/WEB 72AUE/WEB
C ₅ ClH ₄ N] 4	-Chloropy	ridine RN 62	26-61-9	210.0	879.	217.8	911.	
320 320	A A	(14.4) (14.1)	210.0 209.7 210.0*					TAFT 75TAF-75ARN 76AUE/WEB(2)
C ₁₈ H ₁₂] Te	tracene	RN 92-24-0		210.4	880.	217.8	911.	
550	A	(14.8)	210.4					80MAU
C ₃ FH ₈ N] FCI	H ₂ CH ₂ CH ₂ NI	H ₂ RN 462-41	L - 9	210.3*	880.*	217.8*	911.*	
- -		=	210.3**					79AUE/BOW
C ₆ C1H ₆ NO] (l-methy1-2(]	H)pyridinone	210.0	879.	217.8	911.	
300	В	(4.3)	210.0					79AUE/BET
[C5H9NO3] CE	H ₃ CONHCH ₂ C	COOCH ₃ RN x	xxxx	205.8	861.	217.7	911.	,
٠٠٠ و د	(Key)		205.8		. = -			83MAU
C7H0NO1 3-0		1 ₂ RN 536-9		209.8	878.	217.6	910.	- JIMO
600	F	(7.3)	209.8				J20•	81LAU/NIS
С ₁₀ Н ₁₂ 0] 4-	-сн ₃ ос ₆ н ₄	(ссн ₃ сн ₂)	RN 1712-69-2	209.6	877.	217.4	910.	
320	A	(14.0)	209.6					TAFT
C ₇ H ₇ NO] 1-	_	nyl)-ethanon	ie	209.6	877.	217.4	910.	
320	A	(14.0)	209.6 209.6**					TAFT 79AUE/BOW

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer- ence	Relative gas	Gas basicity		lected gas		ton nity	Reference
	base	basicity kcal/mol	kcal/mol		sicity ol kJ/mol	kcal/mol	. kJ/mol	
[C ₇ H ₇ NO] 1-(3		nyl)-ethano	ne	209.4	876.	217.2	909.	
320	A	(13.8)	209.4					TAFT
[C ₆ H ₁₅ O ₄ P] OI	P(OC ₂ H ₅)	3 RN 78-4	0-0	~209.5	~877	~217	~910	
300	(Key)		~209.5			•		80HOD/MCD
[C ₅ H ₁₁ NO ₂] (C (L-Valine)	CH ₃) ₂ CHC RN 72			209.2	875.	217.0	908.	
500	F A	(5.4) (13.6)	207.9 209.2					79MAU/HUN 83MCI
[C2H7N] C2H5	NH ₂ RN	75-04-7		208.5	872.	217.0	908.	
320 320 300 300 300 550 320 535	A A B B A G	(12.8) (12.7) (12.7) (2.2) (2.7) (3.0) (12.0) (0.0) (0.0)	208.4 208.3 208.3 207.9 208.4 208.7* 207.2 208.5 207.6					/TAA-72ARN/JO AF-75ARN-83TA 83MCI 72AUE/WEB 75AUE/WEB (2 76AUE/WEB 80MAU 74STA/BEA 79MAU
$[C_4H_4N_2S_2]$ D	ithioura	cil RN 200	1-93-6	~209	~874	~217	~907	
	(br)		~209					75WIL/MCC
[C ₅ H ₄ N ₄ O] Hy	poxanthi	ne RN 68-	-94-0	~209	~874	~217	~907	
	(br)		~209					75WIL/MCC
[C ₁₀ H ₉ N] 1-Na	aphthyle	namine RM	1 134-32-7	209.1	875.	216.9	907.5	
600	A	(14.0)	209.1					78LAU/SAL
[C ₄ H ₉ NO] Dim	ethylace	tamide RN]		209.0	874.	216.8	907.	
320 320	A A	(13.4) (12.8)	209.0 208.4					75TAF 83TAF
[C7H9N] C6H5	CH ZNH Z	RN 100-46-9	•	209.0	874.	216.8	907.	
320	A	(13.2)	208.8 211.3**					TAFT 79AUE/BOW
[C ₅ H ₉ NO] 1-M RN 872-		pyrrolidino	one	209.0	87 4.	216.8	907.	
300	В	(3.3)	209.0					79AUE/BET
[C3H7NO3] L-	Serine	RN 302-84-	-1	209.0	874.	216.8	907.	
	A	(13.4)	209.0					83MCI
$[C_4H_7NO_4]$ L-				208.9	874.	216.7	907.	
	A	(13.3)	208.9					83MCI
[C ₅ FH ₄ N] 4-F	luoropyr	idine RN	594-52-0	209.2	875.	216.6	906.	
320	Α .	(13.6)	209.2 209.1**				751	TAF-81TAA/SUI 79AUE/BOW

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence	Relative gas	Gas basicity	ga	ected s	Prot affii		Reference
		base	basicity kcal/mol	kcal/mol		icity L kJ/mol	kcal/mol	kJ/mol	
,	_	6 ^H 5 ^{CH} 2 ^{CH}	(NH ₂) COOH RN 150-30-	1	208.7	873.	216.5	906.	
	500	F A	(6.2) (16.7)	208.7 212.3					79MAU/HUN 83MCI
[C ₈ H ₁₂]	(c-C	3H5) 2C=CI	H ₂ RN 822-	93-5	208.7	873.	216.5	906.	
	300	ZZ	(8.7)	208.7 209.5**					77WOL/ABB 79AUE/BOW
[С ₅ н ₉ NO	4] L-	Glutamic	Acid RN 6	17-65-2	208.7	873.	216.5	906.	
		A	(13.1)	208.7					83MCI
[C ₂ H ₇ P]	(CH ₃) ₂ PH RN	676-59-5		208.6	873.	216.3	905.	
	320	A	(12.9)	208.7					74STA/BEA
[C6H7N]	(HCC	:CH ₂) ₂ NH	RN 6921-28-	4	208.3	872.	216.1	904.	
	320	A	(12.7)	208.3					TAFT
^{{C} 10 ^H 16			thyl-3-meth 6609-28-2	ylenecyclo-	207.7**	869.**	216.1**	904.**	
				207.7**					79AUE/BOV
[C6H8N2] 1,	4-C ₆ H ₄ (N	H ₂) ₂ RN 10	6-50-3	208.1	870.	215.9	903.	
	600	F	(5.6)	208.1					81LAU/NIS
	NO] 2		6-methoxypy	ridine	208.1	870.	215.9	903.	
		В	(2.4)	208.1					79AUĘ/BE
[C3H7N]	H ₂ C=	CHCH2NH2	RN 107-11	-9	207.9	870.	215.8	903.	
	320 320	A A B	(12.3) (12.0) (2.4)	207.9 207.6 208.1*					TAFT 75ARN 76AUE/WEI
[C ₃ H ₈ Sr	al (CE	1 ₃) ₂ Sn=CH	2 RN 82065	-00-7	207.4	868.	215.8	903.	
	320		(11.8)	207.4				Ł	82PIE/HE
[С ₈ н ₈]	1,4-0	C ₆ H ₄ (=CH ₂) ₂ RN xxxx	x			215.7	902.	
		(br)							81POL/RA
[C2H5N]	Aziı	dine (Azirane) RN	151-56-4	207.5	868.	215.7	902.	
	320 320 300 300 300	A A B B	(11.6) (11.9) (1.7) (1.9) (11.9)	207.1 207.4 207.4 207.6* 207.5					TAFT 75TAF-75. 75AUE/WE. 76AUE/WE. 80AUE/WE
] Pyr Diazi	idazine ine)	RN 289-80	1-5	208.8	874.	215.6	902.	
	320 535	A C	(13.6) (-0.8)	209.2 208.4					TAFT 79MAU

Table 1. Gas phase basicities and proton affinities--Continued

ence		Gas basicity	ga		Prot affin		Reference
	asicity cal/mol	kcal/mol	kcal/mol	city kJ/mol	kcal/mol	kJ/mol	
[C ₁₆ H ₁₆] (4-CH ₃ C ₆ H ₄) ₂ C=C	CH ₂ RN x	xxxx	207.6	868.	215.4	901.	
2 Z	(7.6)	207.6					77WOL/ABB
[C ₆ H ₅ NO] 4-Pyridinecarbo RN 872-85-5	oxaldehyd	le 207.4**	207.4**	868.**	215.2**	900.**	79AUE/BOW
[BrC ₅ H ₄ N] 3-Bromopyridi:	ne RN 626	5-55-1	207.3	867	215.1	900.	
В	(1.6)	207.3 208.5*					79AUE/BET 76AUE/WEB(2
[C ₄ F ₃ H ₈ N] CF ₃ CH ₂ N(CH ₃) ₂	RN 819-0	06-7	207.4	868.	215.0	900.	
320 A	(11.8)	207.4 207.1**					79AUE/BOW
[C ₃ H ₇ N] c-C ₃ H ₅ NH ₂ RN 76	5-30-0	20142	206.6**	864 **	215.0**	899 **	, 51.02, 2011
103/ 0 0352 /0	3 30 0	206.6**	200.0	001.	223.0	033.	79AUE/BOW
[C4H10N2] c-C(CH3)(C2H5)NHNH RN	4901-75-1	207.1**	867.**	214.9**	899.**	
4 10 2 J		207.1**					79AUE/BOW
[C8H8] 1,2-C6H4 (=CH2)2	RN XXXXX		207.4	868.	214.8	899.	
320 (br)		207.4					8lpOL/RA1
[C ₅ ClH ₄ N] 3-Chloropyrid	ine RN 62	26-60-8	207.0	866.	214.8	899.	
320 A A 300 A 550 A	(11.5) (11.5) (12.3) (11.5)	207.1 207.1 207.9* 206.7					75TAF 83MCI 76AUE/WEB(2 80MAU
[C ₃ H ₇ NO ₂] L-Alanine RN	5 6-4 1-7		206.6	864.	214.8	899.	
A 500 F	(11.0) (6.2)	206.6 208.7					83MCI 79MAU/HUN
[BrC ₅ H ₄ N] 2-Bromopyrid	ine RN	109-04-6	207.1	866.5	214.7	898.	
B 320 A 320 A	(2.1) (11.5) (10.8)	207.8 207.8* 207.1 206.5					79AUE/BET 76AUE/WEB(2 TAFT 75TAF-75ARN
[C ₇ H ₉ NO] 2-CH ₃ OC ₆ H ₄ NH ₂ RN 90-04-0	(o-Anisi	dine)	206.9	866.	214.7	898.	
600 A 600 A	(15.1) (11.8)	210.2 206.9					73YAM/KEB 78LAU/SAL
[C7H9NS] 3-CH3SC6H4NH2	RN 1783	-81-9	206.7	865.	214.5	897.	
600 F	(4.7)	206.7					81LAU/NIS
[C ₃ H ₉ O ₃ PS] SP(OCH ₃) ₃	RN 29	952-66-79	206.7	865.	214.5	897.	
300 (Key)		206.7					80HOD/MCD
[C ₅ ClH ₄ N] 2-Chloropyr	idine RN	109-09-1	206.6	864.	214.4	897.	
320 A 320 A	(11.0) (10.8)	206.6 206.4 207.0*					TAFT 75TAF-75AK 76AUE/WEB(84SHA/BLA
500 A 546 G 550 A	(10.0) (-1.0) (11.0)	205.1 206.6 206.2					79MAU 80MAU

[C ₈ H ₆ N ₂] Q	uin	base	pasicity	- Relative Gas gas basicity basicity		Selected gas basicity		nity	
[C ₈ H ₆ N ₂] Q	uin		kcal/mol	kcal/mol		kJ/mol	kcal/mol	kJ/mol	
		oxaline	RN 91-19-	-0	207.3	867.	214.4	897.	
53		G	(-0.3)	207.3					79MAU
[C ₁₃ H ₂₅ N] tetradec		out-6H-1	-Azabicyc	10[4.4.4]	206.5	864.	214.3	897.	
32	0	A	(10.9)	206.5					81ALD/ARR
[C _A F ₃ H ₂ N]	CF,	(CH ₂) 2NH	I ₂ RN 819-	-46-5	206.5	864.	214.3	897.	
32	0	A A	(10.9) (10.7)	206.5 206.3 206.9**					TAFT 75TAF-75ARN 79AUE/BOW
[C ₇ H ₉ NO] 4	-CH	30C6H4NE	i ₂ RN 10	4-94-9	206.5	864.	214.3	897.	
32	0	A	(10.9)	206.5 206.6**				775	SUM/POL-81TAA/S 79AUE/BOW
[C ₅ FH ₄ N] 3	-Fl	uoropyri	idine RN 3	72-47-4	206.2	863.	214.3	897.	
32	0	A	(10.6)	206.2 207.0*					TAFT 76AUE/WEB(2)
[C3H7NO2S]	L-	Cysteine	e RN 3374	-22-9	206.5	864.	214.3	897.	
		A	(10.9)	206.5					83MCI
[C6H7NO]	2-	(он) с ₆ н ₄	4 ^{NH} 2 RN	xxxxx	206.4	864.	214.2	896.	
60	0	F	(3.9)	206.4					81LAU/NIS
[C ₆ H ₇ NO] 3	- (0	H)C ₆ H ₄ NH	H ₂ RN 591-	27-5	206.4	864.	214.2	896.	
60	0	F	(3.9)	206.4					81LAU/NIS
[CH ₅ N] CH ₃	NH ₂	RN 74-	-89-5		205.7	861.	214.1	896.	
30 30 30 32 32 32 38 60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B B B A A F A A	(0.0) (0.0) (0.0) (0.0) (9.8) (10.1) (2.65) (9.8) (10.0) (10.8)	205.7 205.7 205.7 205.7 205.4 205.7 205.2 205.4 205.1 205.9				72HEN	72AUE/WEB 75AUE/WEB 76AUE/WEB 75HOD/BEA 75TAF-83TAF /TAA-72ARN/JON 79LOC/HUN 83MCI 78LAU/SAL 72BRI/YAM
[CH ₆ N ₂] CH	3 ^{NH}	NH ₂ RN	60-34-4		206.3**	863**	214.1**	896.**	
				206.3**					79AUE/BOW
[C ₈ H ₁₁ N] 3	-c ₂	H ₅ C ₆ H ₄ NI	H ₂ RN 587	-02-0	206.2	863.	214.0	895.	
60	0	F	(3.7)	206.2					81LAU/NIS
[C ₆ H ₁₀] 1, RN 3664-			hylcyclopr	opene	206.**	862.**	214.**	895**	
				206.**					79AUE/BOW
[C2H5N] CH	3CH	=NH RN	20729-41-3		206.1	862.	213.9	895.	
		(br)		206.1 206.1					81ELL/DIX 79ELL/EAD

LIAS, LIEBMAN, AND LEVIN

Table 1. Gas phase basicities and proton affinities--Continued

•	T K	Refer- ence		Gas basicity	ga	ected as	Pro affi		Reference
		base	basicity kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C ₁₅ H ₁₂]	9-Me	thylanth	nracene RN 7	779-02-2	206.1	862.	213.9	895.	
	550	A	(10.9)	206.1					80MAU
C ₆ H ₉ O ₃ P RN 281			a-l-phospha	adamantane	206.0	862.	213.8	894.	
		(Key)		206.0					NOH/DOH08
[C5H12O2] CH ₃	o(сн ₂) ₃ 0	OCH ₃ RN 170	081-21-9	204.8	857.	213.8	894.	
	300	(Key)		204.8					83MAU
(С ₅ н ₁₁ ио	2] (0	:н ₃) ₂ исос	ос ₂ н ₅ RN 68	37-48-9	205.9	861.	213.7	894.	
	320	A	(10.3)	205.9					TAFT
[C7H9N]	4-CH ₂	C6H4NH2	RN 106-49-0)	205.9	861.	213.7	894.	
	320 320	A A	(10.1) (10.7)	205.7 206.3				77SUM/PO	L-81TAA/SUN 75ARN
[С ₈ н ₈ О ₂]	4-CF	1 ₃ 0℃6 ^Н 4СР	HO RN 123-11	1- 5	205.7	861.	213.5	893.	
	320 320	A A	(9.9) (10.4)	205.5 206.0					TAFT
[C7H9N]	3-CH ₃	C6H4NH2	RN 108-44-	-1	205.6	860.	213.4	893.	
	320 600	A F	(10.1) (3.0)	205.7 205.5				751	AF-77SUM/PO 81LAU/NIS
[C ₉ H ₁₃ N]	3-CH	13C6H4N(CH ₃) ₂ RN 12	1-72-2	205.6	860.	213.4	893.	
	320	F A	(3.0) (10.0)	205.9 205.6					77POL/DEV 83MCI
[AsC ₃ H ₉]	(CH	3)3As Ri	N 593-88-4		205.6	860.	213.4	893.	
	320	В	(0.1)	205.6					75HOD/BEA
[C3H3NS]	Th	iazole l	RN 288-47-1		205.4	859.	213.2	892.	
	600	(Key)		205.4					83MAU
[C6H10O2] CH	COCH ₂ CH	2COCH ₃ RN 1	10-13-4	201.5	843.	213.2	892.	
	300	(Key)		201.5					83MAU
[C7H12]	(CH ₃)	2C=CHC (CH ₃)=CH ₂ RN	xxxxx	204.3**	855.	213.1**	892.	
				204.3**					79AUE/BOW
[C ₆ H ₄] o	-Ben	zyne RN	xxxxx		205.7	861.	213.0	891.	
		(br)		205.7					80POL/HEH
[C ₆ F ₃ H ₄ N RN 379			omethylpyri	dine	205.0	858.	212.8	890.	
	320 320 320	D A A	(-11.7) (9.4) (9.3)	201.4 205.0 204.9 205.2*					72TAA/HEN 83TAF 75TAF-75AI /6AUE/WEB

T K	Refer- ence base	Relative gas basicity	Gas basicity	ç	lected gas sicity	Pro affi		Reference
	Dase	kcal/mol	kcal/mol			kcal/mol	kJ/mol	
[C ₆ H ₈ N ₂] 1,2	-С ₆ Н ₄ (NH	2 ⁾ 2 RN 95-	54-5	206.4	864.	212.8	890.	
600	F	(3.9)	206.4					81LAU/NIS
[C ₈ H ₁₈ S] (t-C ₄ H ₉) ₂	s RN 107	-47-1	205.0	858.	212.8	890.	
320	A	(9.9)	205.0					TAFT
[C ₃ H ₇ O ₃ P] 2- pholane R			phos-	204.9	857.	212.7	890.	
320	(Key)			204.9				80HOD/HOU
[C ₆ F ₃ H ₄ N] 3- RN 3796-23		omethylpyri	dine	204.8	857.	212.6	889.	
320	A	(9.2)	204.8 205.0*					75TAF-75AR 79AUE/BOW
[C2FH6N] CH2	FCH2NH2	RN 406-34-	8	204.5	856.	212.3	888.	
320	A	(8.7)	204.3 204.6**					75TAF-75AR 79AUE/BOW
[C3H9O4P] OP	(OCH ₃) ₃	RN 512-56	-1	204.2	854.	212.0	887.	
300	(Key)		204.2 202.0			212 5	202 44	80HOD/MCD
[С ₄ Н ₁₀ О ₂] но	(CH -) - OH	DN 110_63		198**	828**	213.5 212**	887**	*82PIE/HEH
1041110021 110	(Cli ₂) 4011	VM TTO-02	198**	130	020""	212~~	88/**	70 MIE /BON
[C ₃ H ₅ N] 1-Az RN 19540-0		[1.1.0]buta		204**	853**	212**	887**	79AUE/BOW
300	T	(24.0)	~202. 204**					75AUE/WEB(79AUE/BOW
[C ₆ H ₈] 1-Met		thylenecycl	obutene	204**	853**	212**	887**	
RN 15082-1	3-0		204**					79AUE/BOW
[C ₇ H ₅ O ₂ Rh] (C ₅ H ₅).Rh (CO) 2 RN 12	192-97-1			212**	887**	
320	A	(8 <u>+</u> 2)						81STE/BEA
$[C_{14}H_{12}]$ $(C_{6}$	Н ₅) ₂ С≕СН	2 RN 530-4	8-3	204.1	854.	211.9	887.	
320 320 320	A A ZZ	(8.2) (8.5) (4.1)	203.8 204.0 204.1 204.0**					75TAF 75WOL/HAR 77WOL/ABB 79AUE/BOW
[C ₆ H ₈ O ₂] 1,3	-Cyclohe	xanedione R	N 504-02-9	204.5	856.	211.9	886.	
300	(Key)		204.5					83MAU
[С ₂ н ₅ NО ₂] ин	₂ Сн ₂ Соон	(Glycine)	RN 56-40-6	203.7	852.	211.6	885.	
382	F A F	(+1.2) (8.2) (0.0)	203.7 203.8 202.5					79LOC/HUN 83MCI

Table 1. Gas phase basicities and proton affinities--Continued

	т к	Refer- ence base	Relative gas basicity	Gas basicity	g	ected as icity	Pro affi		Reference
			kcal/mol	kcal/mol			kcal/mol	kJ/mol	
[C ₆ F ₃ H ₄ I RN 36			omethylpyrio	dine	203.6	852.	211.5	885.	
	320	A	(8.0)	203.6					75TAF
[C ₂₀ H ₁₂] Pery	ylene RN	198-55-0		204.3	855.	211.4	884.	
	550	A	(+9.1)	204.3					80MAU
[С ₃ н ₇ NO] (CH	3) 2NCHO R	RN 68-12-2		203.6	852.	211.4	884.	
	320	A	(8.0)	203.6 204.6**					75TAF 79AUE/BOW
	382	F	(0.95)	203.6					79LOC/HUN
IC2H6os		3)2 ^{SO RN}	1 67-68-5		203.5	851.	211.3	884.	
	320 600	A (br) A	(7.7)	203.3 177. 203.6					75TAF-83TAF 77MCA 79LAU
[C4H8N2] NCC	H ₂ N (CH ₃) 2	RN 926-6	4-7	203.3	851.	211.1	883.	
	320	A	(7.7)	203.3					TAFT-75ARN
[C ₁₀ H ₁₂] 4-Ci	13C6H4C(C	:н ₃) сн ₂ гі	N 1195-32-0	203.2	850.	211.0	883.	
	320	A	(7.6)	203.2					TAFT
[C ₁₃ H ₁₀	o] (c	5H ₅) ₂ CO R	N 119-61-9		203.1	850.	210.9	882.	
	320	A	(7.5)	203.1					83TAF
[C3H5N]	нссси	ann 2 RN	2450-71-7		203.0	849.	210.8	882.	
	320	A	(7.4)	202.9 203.1**					TAFT 79AUE/BOW
[C7H10O] (c-	-с ₃ н ₅) ₂ со	RN 1121	-37-5	202.9	849.	210.7	881.5	
	320 320	ZZ	(2.9) (9.8)	202.9 198.7					83TAF 81BRO/ABB
[C3F3H6	N] CF	CH ₂ CH ₂ NH	2 RN 460-	39-9	202.8	849.	210.6	881.	
	320 320	A A	(7.4) (7.2)	202.9 202.7 203.4**					TAFT 75TAF-75ARN 79AUE/BOW
[C5FH4N] 2-F]	luoropyri	dine RN 37	2-40-5	202.8	849.	210.6	881.	
	320 320	A A A	(7.4) (7.2) (7.3)	202.9 202.7 202.8 204.0					TAFT 75TAF-75ARN 83MCI 76AUE/WEB(2)
	382 500	F A	(0.35) (6.6)	202.8 201.7					79LOC/HUN 84SHA/BLA
[C ₈ H ₁₄]	(CH ₃)	2C=C(CH ₃) C (CH ₃) = CH ₃	2 201.8**	201.8**	844.**	210.6**	881.**	79AUE/BOW
[CaHaNa] Pvri	imidine (e)RN 289-95-2	203.5	851.	210.5	881.	/=
- 4 4 2	320 510	A G	(8.0) (-4.2)	203.6 203.4					TAFT 79MAU
10			racene RN 6		202.5	847.	210.3	880.	

	r K	Refer- ence base	Relative gas basicity kcal/mol	Gas basicity kcal/mol	g bas	ected as icity l kJ/mol	Prof affin kcal/mol	nity	Reference
									
$[C_6H_4N_2]$	4-P	yridinec	arbonitrile	RN 100-48-1	202.5	851.	210.3	880.	
	320	A	(6.5)	202.1 202.8*					75TAF-75AR 76AUE/WEB (
, , ,		Methyl-3 2.2]-oct	,6,7-trioxa- ane RN 144	-1-phospha- 19-91-8	202.2	846.	210.0	87 9.	
	320	(Key)		202.2					NOH/DOH08
[C4H9NO]	n-C	3H7NHCHO	RN 6281-94-	-3	202.2**	846.	210.0**	879.	
3,7		<i>,</i>		202.2**					79AUE/BOW
[CınFeHı	n] (C _E H _E) ₂ Fe	RN 102-54-	5	~202	~845.	~210	~879.	
10 1	0	(br)		~202					75FOS/BEA
[C_F_H_N	ידי ן	, ,	3 RN 2730-6		202.2	846.	209.8	878.	-,
3 3 0	320	3 ^{CH} 2 ^{KHCH}	(6.3)	201.9		3.0.	207.0	J.J.	75TAF
			, 0.07	202.4**					79AUE/BOW
[C3H4N2]	Pyr	azole R	N 288-13-1		202.0	845.	209.8	878.	
	600	(Key)		202.0					83MAU
[C ₆ H ₁₄ S]	(i-	С ₃ н ₇) ₂ s	RN 625-80-	9	201.8	844.	209.6	877.	
	320	A	(6.2)	201.8 202.0**					TAFT 79AUE/BOW
[C6H7N]	С ₆ Н ₅	NH ₂ RN	62-53-3		202.5	847.	209.5	876.	
	320	F	(0.0)	202.8					77POL/DEV
	382 500	F F	(0.0)	202.5					79LOC/HUN 79MAU/HUN
	600 320	F A	(0.0) (7.2)	202.5 202.8					81LAU/NIS 75TAF-75AR
	320 550	A G	(6.9) (-5.2)	202.5 202.4					83TAF 79MAU
	550 600	A	(+5.8) (6.9)	201.0					80MAU
	600 600	A J A	(25.6) (8.9)	202.0 201.2 203.5					78LAU/SAL 76LAU/KEB
[C ₆ H ₄ N ₂]				RN 100-54-9	201.5	843.	209.3	876.	72BRI/YAM
	320	A	(5.6)	201.2					TAFT
	320	A	(5.9)	201.5 201.7*					75TAF-75AF 76AUE/WEB (
[C ₆ H ₈ O]	2,5	-Dimethy	lfuran RN	625-86-5	201.3	842.	209.1	875.	
	600	(Key)		201.3					83MAU
[C4H4N2]	Ру	razine (1,4-Diazine) RN 290-37-9	201.2	842.	209.0	874.	
	320 550	A G	(5.6) (-6.0)	201.2 201.2					TAFT 79MAU
[C ₆ H ₁₀]	c-Ca	H _E C (CH ₂)	=CH ₂ RN 466		201.2	842.	209.0	874.	
0 10,	320	Α	(.5.6)	201.2		-			TAFT 79AUE/BOW
[C ₀ H ₁ ₀ Ol	(se	c-CaHa)a	O RN 6863-5		201.2	842.	209.0	874.	,
0 10.	,	XX	(6.7)			-			

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer- ence	Relative gas	Gas basicity	g	ected as	Prot affi		Reference
	base	basicity kcal/mol	kcal/mol		icity l kJ/mol	kcal/mol	kJ/mol	
[C ₆ H ₆ IN] 3-:	C6H4NH2 I	RN 626-01-7	·	201.1	841.	208.9	874.	
600	F	(-0.9)	201.1					81LAU/NIS
[C5H6N2O2]	Thymine Ri	N 65-71-4		201.0	841.	208.8	874.	
550	G (br)	(-6.6)	201.0 200			٠		79MAU 75WIL/MCC
[C ₇ H ₁₆ O] (i	-c ₃ H ₇)0(t-	-C ₄ H ₉) RN 1	7348-59-3	201.0**	841.**	208.8**	874.**	
			201.0**					79AUE/BOW
[C ₉ H ₁₀ O] (4	-сн ₃) с ₆ н ₄ 0	COCH ₃ RN xx	xxx	200.9	840.5	208.7	873.	
320	A	(12.0)	200.9					81BRO/ABB
$[C_8H_{18}S]$ (n	-C ₄ H ₉) ₂ S	RN 544-40-1		200.9	840.5	208.7	873.	
300	(Key)		200.9					UAME8
$[C_6C1H_6N]$ 4	-C1C ₆ H ₄ NH	2 RN 106-47	-8	201.0	841.	208.6	873.	
320 320	A A	(5.1) (5.4)	200.7 201.0				75TAF-75	TAFT SARN-77SUM/PC
[C5H4N202]	4-Nitropy	ridine RN	1122-61-8	200.7	840.	208.5	872.	
320	D	(-18.1)	194.9					72TAA/HEN
320 320	A A	(5.0) (5.2)	200.6 200.8 201.7**					TAFT 75TAF-75AR 79AUE/BOW
[C ₂₂ H ₁₂] 1,	12-Benzop	erylene RN	191-24-2	201.1	841.	208.5	872.	
550	A	(5.9)	201.1					UAM08
[C3H3NO] O	xazole R	N 288-42-6		200.6	839.	208.4	872.	
600	(Key)	٠	199.2					UAME8
[C4H80] C2H	50CH=CH2	RN 109-92-	2	200.4	838.	208.2	871.	
600	(Key)		200.4					83MAU
[C6H4N2] 2-	Pyridinec	arbonitrile	RN 100-70-9	200.3	838.	208.1	871.	
320	A	(4.3)	199.9				•	TAFT
500	F	(-1.9)	201.1* 200.6			•		76AUE/WEB(2 79MAU/HUN
[BrC ₆ H ₆ N] 3	-BrC ₆ H ₄ NH	2 RN 591-19	-5	200.3	838.	208.1	871.	
600	F	(-2.2)	200.3					81LAU/NIS
[CcFHcN] 4-	FC ₆ H ₄ NH ₂	RN 371-40-4		200.3	838.	208.1	871.	
320		(4.6)	200.2					81TAA/SUM
320		(5.0)	200.6					75TAF-75AR
$[C_{10}H_{14}N_{2}C_{5}$] Thymidi	ne RN 50-89	-5	~200	~837	~208	~870	
	(br)		~200					75WIL/MCC
$[C_9H_{12}N_2O_6]$	Uridine	RN 58-96-8		~200	~837	~208	~870	
	(br)		~200					75WIL/MCC
[C9H14N2O6]	5,6-Dihy	drouridine	RN 5627-05-4	~200	~837	~208	~870	
	(br)		~200					75WIL/MCC

Table 1. Gas phase basicities and proton affinities--Continued

T K Reference	gas	Gas basicity		lected gas		oton inity	Reference
base	basicity kcal/mol	kcal/mol		sicity ol kJ/mol	kcal/mo	kJ/mo1	
[C ₁₂ H ₁₆ N ₂ O ₆] 2',3 RN 362-43-6	-0-Isopropyli	ideneuridine	~200	~837	~208	~870	
(br)	~200					75WIL/MCC
[C ₄ H ₄ N ₂ O] 2(1H)-P	yrimidinone B	RN 557-01-7	~200	~837	~208	~870	
(br)	~200					75WIL/MCC
[C4H4N2O2] Uracil	RN 66-22-8		~200	~837	~208	~870	
(br		~200					75WIL/MCC
[C5H3ClN4] 6-Chlo	ropurine RN 87	7-42-3	~200	~837	~208	~870	
(br		~200					75WIL/MCC
$[C_6H_{10}]$ $CH_3CH=CHC$	(CH ₃) = CH ₂ RN 1	1118-58-7	199.9*	* 836.**	207.9*	* 870.**	
		199.9**					79AUE/BOW
[C ₅ H ₈ O ₂] CH ₃ COC	H=C (OH) CH ₃	RN 123-54-6	199.3	834.	207.8	869.	
320 A 300 (Ke	(3.7) y)	199.3 199.2 200.1**					TAFT 83MAU 79AUE/BOW
[C4H5N] Pyrrole R	N 109-97-7		200.3	838.	207.6	868.	
550 G 600 A 600 A	(-6.4) (5.6) (7.15)	201.6** 200.8 200.3 201.8					79AUE/BOW 79MAU 79LAU 73YAM/KEB
$[C_2F_2H_5N]$ CF_2HCH_2	NH ₂ RN 430-67-	-1	199.8	836.	207.5	868.	
320 A 320 A	(4.0) (4.2)	199.6 199.8 200.0**					TAFT 75TAF-75ARN 79AUE/BOW
[C ₃ H ₆ O] CH ₂ =CHOC	H ₃ RN 107-25	5-5	199.6	835.	207.4	868.	
600 (Ke	7)	199.6					83MAU
$[C_{12}H_{18}]$ $(CH_3)_6C_6$	RN 87-85-4		200.0	837.	207.3	867.	
320 ZZ 320 A 320 J 320 A	(0.0) (4.2) (25.1) (4.8)	200.0 199.8 199.7 200.4					77WOL/ABB 83TAF 76WOL/DEV 75WOL/HAR
[C6ClH6N] 3-Chlore	obenzeneamine	RN 108-42-9	199.4	834.	207.2	867.	
320 A 320 A 600 A 600 F	(4.5) (4.0) (3.6) (-3.1)	200.0 199.6 198.8 199.4					75ARN 77SUM/POL 79LAU 81LAU/NIS
[C2H7O3P] (CH3O) 2	PHO RN 868-85-	-9			207.2	867.	
(br)	(PA associat	ed with P-pr	otonatio	n: 213.5 }	cal/mol)		82PIE/HEH(2)
[C4F2H7NO] CF2HCO	N(CH ₃) ₂ RN 667	7-50-5			207.2	867.	
[C U O b] 2 6 7 m;	rious 1 -k-s d	anhinus I -	202.2	227	207.7		*82PIE/HEH(2)
[C ₄ H ₇ O ₃ P] 2,6,7-T: [2.2.2]octane		apicAc10-	200.0	837.	207.1	866.5	
320 (Key	7)	200.0					80HOD/HOU

Table 1. Gas phase basicities and proton affinities--Continued

	ence base		Relative gas basicity	Gas basicity	q	lected gas sicity	Pro affi		Reference
		Dusc	kcal/mol	kcal/mol			kcal/mol	kJ/mol	
[C ₈ H ₁₂] RN 49			icyclo[2.2.	l]heptane 199**	199**	833**	207**	866**	79AUE/BOW
[C ₁₄ H ₁₀] Ant	hracene	RN 120-12-7		199.9	836.	207.0	866.	
	550	A	(4.7)	199.9					UAM08
[B ₄ C ₂ H ₆] 1,6	-с ₂ в ₄ н ₆	RN 20693-67	-8	199.	833.	207.	866.	
		(br)		199.					80DIX
[C6FH6N] 3-F	luoroben	zenamine RN	372-19-0	199.2	833.	207.0	866.	
	320 600	A F	(3.5) (-3.2)	199.1 199.3					77SUM/POL 81LAU/NIS
[C ₉ H ₁₀]	с ₆ н ₅	C (СН ₃) =С	H ₂ RN 98-83	-9	199.2	833.	207.0	866.	
	320 320	A ZZ	(3.6) (-1.0)	199.2 199.0			75т	AF-75WOI	L/HAR-78TAF/WC 77WOL/ABB
$[{^{\text{C}}_{3}}^{\text{H}}{_{6}}^{\text{N}}{_{2}}$] H ₂ N	(CH ₂) ₂ CN	RN 151-18	-8	198.1	829.	207.0	866.	
	320 320 550 550	A A G A	(2.6) (3.2) (-9.6) (+2.4)	198.2 198.7 198.0 197.6					TAFT 75ARN 79MAU 80MAU
[C2H6N2] (E)	-CH ₃ N=NC	H ₃ RN 4143-	41-3	199.1	833.	206.9	866.	
		(Key) (br)		199.1 200					74FOS/WIL 72FOS/BEA
[C ₉ FH ₉]	4-FC	6 ^Н 4 ^С (СН ₃)=CH ₂ RN 35	0-40-3	199.0	833.	206.7	865.	
	320	Α.	(3.4)	199.0					TAFT
$[C_6H_{14}S$] (n-	с ₃ н ₇) ₂ s	RN 111-47-	7	198.7	831.	206.5	864.	
	320		(3.1)	198.7					TAFT
[C ₉ H ₁₈ O] (te	rt-C ₄ H ₉)	2 ^{CO} RN 815-	24-7			206.5	864.	*82PIE/HEH(2)
[C ₂ H ₅ NO] CH ₃	CONH ₂ RN	60-35-5		198.4	830.	206.2	863.	
	320	A	(3.3)	198.4					73YAM/KEB
[C ₁₆ H ₁₀] Pyr	ene RN 1	29-00-0		199.8	836.	206.1	862.	
	550	A	(4.6)	199.8					80MAU
$[C_3H_6N_2$] CH ₃	NHCH ₂ CN	RN 5616-32	:-0	198.2	829.	206.0	862.	
	320	A	(2.6)	198.2					TAFT
[C ₆ H ₁₄ O] (i-	с ₃ н ₇) ₂ 0	RN 108-20-3	1	198.4	830.	206.0	862.	
	320 335 340	U XX H	(9.7) (3.9) (10.9)	198.6 198.4 198.0 198.7**					81BRO/ABB 82MAU 80LIA/SHO 79AUE/BOW
[C8H12]		thylbicy	clo[2.2.1]h	ept-2-ene			206.	862.	
		(Key)							76SOL/FIE

Table 1. Gas phase basicities and proton affinities--Continued

	T K Refer- Relative Gas ence gas basici		affi	nity	Reference
198** 198** 79AUE/BOIL Coh	base basicity kcal/mol kcal/m			. kJ/mol	
[C ₆ H ₁₀] CH ₂ =CH(CH ₃)C(CH ₂) ₂ RN 16906-27-7	[C ₄ H ₆] 1-Methylcyclopropene RN 3100-04	- 7 198** 8	28** 206**	862**	
1984 1984 206** 862** 205.8 861** 206** 862** 205.8 861** 206** 862** 205.8 861** 206** 862** 205.8 861** 206** 862** 205.8 861** 205.8 861** 205.8 205.8 861** 205.8 205.7 861** 205.8 205.8 205.7 861** 205.8	198**				79AUE/BOW
[CgCrHa003] (CgHs)Cr(CO)3CH3 RN 41311-89-1 320 A (2.0±2.0) [C2H5N0] HCONHCH3 RN 123-39-7 [C4H9N02] t-C4H9ONO RN 540-80-7 [C4H9N02] t-C4H9ONO RN 540-80-7 [C5H6S] 2-Methylthiophene RN 554-14-3 [C6H10] CH3CH=C(CH3)CH=CH2 RN 4549-74-0 [C7H30] CH3CH=C(CH3)CH=CH2 RN 4549-74-0 [C7H30] CH3CH=C(CH3)CH=CH2 RN 4549-74-0 [C7H30] CH3CH=CH3 RN 98-86-2 [C7H30] CH3CH=CH3 RN 98-86-3 [C7H30] CH3CH=CH3	[C ₆ H ₁₀] CH ₂ =CH(CH ₃)C(CH ₂) ₂ RN 16906-27	-7 198* 8	28* 206*	862*	
C2H5NO C3H0 C3H0 C3H0 C4H0 C4	198*				79AUE/BOW
C2H5NO	$[C_9CrH_8O_3]$ $(C_5H_5)Cr(CO)_3CH_3$ RN 41311-8	9-1	206**	862**	
Sibrolary Sibr	320 A (2.0 ± 2.0)				81STE/BEA
Sibrolary Sibr	[C ₂ H ₅ NO] HCONHCH ₃ RN 123-39-7	198.0 8	28. 205.8	861.	
Carrest	- 3				81BRO/ABB
Color	[C ₄ H ₉ NO ₂] t-C ₄ H ₉ ONO RN 540-80-7	197.9 8	28. 205.7	861.	
Sample S					78FAR/MCM
	[C ₅ H ₆ S] 2-Methylthiophene RN 554-14-3	197.9 8	28. 205.7	861.	
197.3** 197.8 828. 205.6 860. 86	600 (Key) 197.9				83MAU
[C ₅ H ₆ O] 2-Methylfuran RN 534-22-5 197.8 828. 205.6 860. RN 534-22-5 197.8 197.8 197.8 197.8 197.8 197.8 197.8 197.8 197.8 197.4 197.8 197	[C ₆ H ₁₀] CH ₃ CH=C(CH ₃)CH=CH ₂ RN 4549~74-	0 197.3** 8	125.5** 205.7*	861.	
Companies 197.8 197.8 197.8 197.8 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.4 859. 197.4 826. 205.3 859. 197.5 826. 205.3 859. 197.5 826. 205.3 859. 197.5 826. 205.3 859. 197.5 826. 205.2 859.** 197.9 828.** 205.2 859.** 197.9 828.** 205.2 859.** 197.9 828.** 205.2 859.** 197.4 826. 205.1 858. 197.4 826. 205.1 826. 205.1	197.3	**			79AUE/BOW
Companies Comp	[C ₅ H ₆ O] 2-Methylfuran RN 534-22-5	197.8 8	28. 205.6	860.	
STATE STAT	600 (Key) 197.8				83MAU
320 U (8.9) 197.8 61BRO/ABI 79LAU 79LAU 81BRO/ABI 600 A (2.0) 197.1 197.8 81BRO/ABI 79LAU 81BRO/ABI 79LAU 81BRO/ABI 79LAU 81BRO/ABI 79LAU 81BRO/ABI 79LAU 81BRO/ABI 79LAU 81BRO/ABI 81BRO/ABI 79LAU 81BRO/ABI 81BRO/AB	[C ₈ H ₈ O] C ₆ H ₅ COCH ₃ RN 98-86-2	197.4 8	205.4	859.	
600 A (2.0) 197.1 79LAU 81LAU/NI. [C ₆ H ₁₂ O] 2,2-Dimethyltetrahydrofuran RN xxxx 197.6 827. 205.4 859. 320 U (8.7) 197.6 [C ₆ H ₁₄ O] C ₂ H ₅ O(t-C ₄ H ₉) RN 637-92-3 197.5 826. 205.3 859. 320 A (1.9) 197.5 [C ₁₀ H ₂₂ O] (n-C ₅ H ₁₁) ₂ O RN 693-65-2 197.9** 828.** 205.2** 859.** 197.9** 197.9** 197.3 826. 205.1 858. 320 A (0.7) 196.3 320 U (8.4) 197.3 [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 [C ₂ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. [C ₂ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. [C ₂ H ₂ D ₂ RN 334-88-3 197. 824. 205. 858.	· · · · · · · · · · · · · · · · · · ·				
[C ₆ H ₁₂ O] 2,2-Dimethyltetrahydrofuran RN xxxx 197.6 827. 205.4 859. 320 U (8.7) 197.6 205.3 859. [C ₆ H ₁₄ O] C ₂ H ₅ O(t-C ₄ H ₉) RN 637-92-3 197.5 826. 205.3 859. [C ₁₀ H ₂₂ O] (n-C ₅ H ₁₁) ₂ O RN 693-65-2 197.9** 828.** 205.2** 859.** 197.9** [C ₅ H ₈ O] C-C ₃ H ₅ COCH ₃ RN 765-43-5 197.3 826. 205.1 858. 320 A (0.7) 196.3 320 U (8.4) 197.3 200. 858. [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ C1H ₉] 4-C1C ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 199.9 836. 205.0 858. [C ₂ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. [C ₂ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858.	600 A (2.0) 197.1				79 LAU
320 U (8.7) 197.6 [C ₆ H ₁₄ O] C ₂ H ₅ O(t-C ₄ H ₉) RN 637-92-3 320 A (1.9) 197.5 [C ₁₀ H ₂₂ O] (n-C ₅ H ₁₁) ₂ O RN 693-65-2 197.9** 197.9** 197.3 826. 205.3 859. 79AUE/BOI [C ₅ H ₈ O] c-C ₃ H ₅ COCH ₃ RN 765-43-5 197.3 826. 205.1 858. 320 A (0.7) 196.3 320 U (8.4) 197.3 [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ C1H ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₂ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 [CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3 197. 824. 205. 858.					81LAU/NIS
[C ₆ H ₁₄ O] C ₂ H ₅ O(t-C ₄ H ₉) RN 637-92-3 197.5 826. 205.3 859. 320 A (1.9) 197.5 TAFT [C ₁₀ H ₂₂ O] (n-C ₅ H ₁₁) ₂ O RN 693-65-2 197.9** 828.** 205.2** 859.** 79AUE/BOI [C ₅ H ₈ O] C-C ₃ H ₅ COCH ₃ RN 765-43-5 197.3 826. 205.1 858. 320 A (0.7) 196.3 320 U (8.4) 197.3 200 U (8.4) 197.2 825. 205.0 858. [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. [C ₉ C1H ₉] 4-C1C ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 205.0 858. [C ₂ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 836. 205.0 858.	V 12		205.4	859.	01000/200
TAFT [C10H22O] (n-C5H11)2O RN 693-65-2 197.9** 197.9** 197.3 826. 205.2** 859.** 79AUE/BOY [C5H8O] c-C3H5COCH3 RN 765-43-5 197.3 826. 205.1 858. 320 A (0.7) 196.3 320 U (8.4) 197.3 [C4H10S] (C2H5)2S RN 352-93-2 197.2 825. 205.0 858. TAFT 79AUE/BOY [C9C1H9] 4-C1C6H4C(CH3)=CH2 RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C24H12] Coronene RN 191-07-1 199.9 836. 205.0 858. 80MAU [CH2N2] CH2N2 RN 334-88-3 197. 824. 205. 858.	,,		26. 205.3	859.	81BRU/ABB
[C ₁₀ H ₂₂ O] (n-C ₅ H ₁₁) ₂ O RN 693-65-2 197.9** 828.** 205.2** 859.** 197.9** 79AUE/BOX [C ₅ H ₈ O] c-C ₃ H ₅ COCH ₃ RN 765-43-5 197.3 826. 205.1 858. 320 A (0.7) 196.3 825. 205.0 858. [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 TAFT [C ₂₄ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. [C ₄ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858.			2000		ТАРТ
197.9** 79AUE/BOX 197.9** 79AUE/BOX 197.3 826. 205.1 858. 83TAF 197.3 826. 205.1 858. 83TAF 197.3 826. 205.1 858. 83TAF 197.2 825. 205.0 858. 197.2 825. 205.0 858. 197.2 198.3** 197.2 825. 205.0 858. 197.2 198.3** 197.2 825. 205.0 858. 197.2 198.3** 197.2 197.2 198.3** 197.2 197.2 198.3** 197.2 197.			128.** 205.2**	* 859.**	
320 A (0.7) 196.3 320 U (8.4) 197.3 [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 TAFT [C ₂₄ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 [CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3 197. 824. 205. 858.					79AUE/BOW
320 U (8.4) 197.3 [C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 320 A (1.6) 197.2 [C ₂₄ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 [CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3 197. 824. 205. 858.	[C ₅ H ₈ O] c-C ₃ H ₅ COCH ₃ RN 765-43-5	197.3 8	205.1	858.	
[C ₄ H ₁₀ S] (C ₂ H ₅) ₂ S RN 352-93-2 197.2 825. 205.0 858. 320 A (1.6) 197.2 198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 TAFT [C ₂₄ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 836. 205.0 858. [CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3 197. 824. 205. 858.					83TAF
320 A (1.6) 197.2 198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2					
198.3** [C ₉ ClH ₉] 4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5 197.2 825. 205.0 858. 320 A (1.6) 197.2 TAFT [C ₂₄ H ₁₂] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 824. 205. 858.		197.2 8	205.0	858.	
[C24H12] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 836. 205.0 858. [CH2N2] CH2N2 RN 334-88-3 197. 824. 205. 858.	[C ₉ C1H ₉] 4-C1C ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-7	0-5 197.2 8	25. 205.0	858.	·
[C24H12] Coronene RN 191-07-1 199.9 836. 205.0 858. 550 A (4.3) 199.9 80MAU [CH2N2] CH2N2 RN 334-88-3 197. 824. 205. 858.					TAFT
550 A (4.3) 199.9 80MAU [CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3 197. 824. 205. 858.	[C ₂₄ H ₁₂] Coronene RN 191-07-1	199.9 8	36. 205.0	858.	
[CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3 197. 824. 205. 858.					80MAU
			24. 205.	858.	
(DL) 19/. 72FOS/BE	(br) 197.				72FOS/BEA

Table 1. Gas phase basicities and proton affinities--Continued

Т	en	efer- Relative Gas ence gas basicity			g	ected as icity		oton inity	Reference
	ba	ise : k	basicity cal/mol	kcal/mol	kcal/mol		kcal/mol	kJ/mol	·
C ₁₀ CrH ₇ O ₃) (C ₆ H	I ₅ CH ₂)C	Cr(CO) ₃ RN	32984-97-7			205**	858**	
320	-	_	(1+2)						81STE/BEA
С _З Gен _я) (С			_	_99_1	195.6	818.	204.9	857.	
32	-	_	(0.9)	196.5	1,5.0				82PIE/HE
						5.2.2			
[C4H ₁₀ O ₂] (CH ₃ OCH	12CH2OC	CH ₃ RN 110	-71-4	195.8	819.	204.9	857.	
30 30		(ey)	(0.2)	195.8 195.3					83MAU 84SHA/BLA
[C7H14O] (i-С ₃ н-	7) 2 ^{CO}	RN 565-80	-0	197.0	824.	204.9	857.	
32 32		Z Z U	(-3.9) (8.1)	196.1 197.0					83TAF 81BRO/ABE
[C_H_00_] 1	.2-Cv	clohex	anedione	RN 765-87-7	197.4	825.	204.8	857.	
30		Key)		197.4					UAME8
[C ₆ H ₅ NO] N	itros	obenze	ne RN 586	5-96-9	197.0	824.	204.8	857.	
. 6 5		br)		197.0					80REE/FRI
[H ₄ N ₂] H ₂ N	NH ₂	RN 302	-01-2		196.7	823.	204.7	856.	
	0 A 0 (Ke	(4.0 y))	199.6 196.7					75ARN 83MAU
[C ₁₄ H ₁₈] 1 phenanth				/dro-	195.1	816.	204.7	856.	
5.5	0	A	(-0.1)	195.1					UAMO8
[C7F3H6N]	3-CF ₃	C ₆ H ₄ NH	2 RN 98-1	5-8	196.4	822.	204.2	854.	
60	0	F	(-6.1)	196.4					81LAU/NI
[CH ₅ P] CH ₃	PH ₂	RN 593	-54-4		196.3	821.	204.1	854.	
32 32	20	A H	(-0.3)	195.3 196.3					74STA/BE
[C ₆ H ₅ O] C ₆			RN xxxx		~196	~820	~204	~853	
- 65 - 6	-	br)		~196					80DEF/MC
[H ₃ N] NH ₃	PN 76	64-41-	.7		195.6	818.	204.0	853.5	
							203.6		79CEY/TI
	resno 20	old Val A	(0.0)						TAFT
32		A A	(0.0) (0.0)	195.6 195.6					83TAF 77WOL/ST
32		A	(0.0)	195.6					75TAF
32		Α	(0.0)	195.6					72HEN/TA 72ARN/JC
32		A	(0.0)	195.6					82PIE/HE
32	20	A A	(0.0)	195.6 195.6					83MCI
55	50	A	(0.0)	195.2					UAM08
	00	A	(0.0)	195.1					79LAU
	ου	A	(0.0)	195.1			-		73YAM/KE
60	00	A	(0.0)	195.1					78LAU/SA 80LIA/SH
	40	H	(8.3)	195.6					77WOL/51
	20	Н		196.6			~204**	853**	
[С ₇ Сон ₅ О ₂	j (C ₅ i	1 ₅) Co (0	CO) ₂ RN 12	078-25-0			204**	033	01 CME /P
. 3	20	A	(0+2)						81STE/B

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence	Relative gas	Gas basicity		lected gas		oton inity	Reference
		base	basicity kcal/mol	_	bas	sicity	kcal/mol	_	
С ₈ н ₁₈ С)] (n-	C ₄ H ₉) ₂ O	RN 142-96-	1	195.9	820.	203.7	852.	
	335	xx	(1.4)	196.6** 195.9					79AUE/BOW 82MAU
С8н80	4-(C	н ₃) с ₆ н ₄ с	CHO KN 104-8	7-0	195.9	820.	203.7	852.	
	320	Α	(0.3)	195.9					TAFT
C8H14	0 ₂] c	-c ₆ н ₁₁ сс	оосн ₃ RN 46	30-82-4	195.9	820.	203.7	852.	
	320 320	A H	(-0.7)	194.9 195.9					83TAF
Санво	₂] C ₆ H	₅ CO ₂ CH ₃	RN 95-58-3		195.9	820.	203.7	852.	•
	320 320	U H	(7.1)	196.0 195.9					81BRO/ABE
C6F3H	10 ^{NO]}	CF ₃ CONH	(n-C ₄ H ₉) RN	400-59-9	195.8	819.	203.6	852.	
	320	A	(0.2)	195.8					TAFT
[C ₅ H ₁₀	0] c-C	4H70(2-0	CH ₃) RN 96-	47-9	195.8	819.	203.6	852.	
	320	U	(6.9)	195.8					81BRO/AB
[С ₁₂ Н ₁	₀] Ace	naphthe	ne RN 83-32-	9	196.4	822.	203.5	851.	
	550	A	(1.2)	196.4					UAM08
[С ₃ н ₈ ѕ] Сн ₃ s	C2H5 R	N 624-89-5		195.7	819.	203.5	851.	
	320	A	(-0.9)	194.7					TAFT
	320	Н		195.7 195.8**					79AUE/BO
(C5H ₁₂	ој с ₂ н	150(i-C3	H ₇) RN 625-	54-7	195.7	819.	203.5	851.	
	320	A	(-0.9)	194.7 195.7					77WOL/ST
	320 320	H U	(7.3)	196.2					81BRO/AB
[C ₂₂ H ₁	4} Pic	ene RN	213-46-7		196.3	821.	203.4	851.	
	550	A	(1.1)	196.3			•		UAMOS
[С ₁₂ Н ₈] Biph	enylene	RN 259-79-	-0	196.3	821.	203.4	851.	
	550	Α	(1.1)	196.3					UAM08
[C ₆ H ₁₈	osi ₂]	((CH ₃) ₃	Si) ₂ 0 RN 10	7-46-0	~195	~816	~203	~849	
		(br)		~195 <u>+</u> 3					75PIT/BU
[C4H14	osi ₂]	((CH ₃) ₂	SiH) ₂ O RN 32	277-26-7	~195	~816	~203	~849	
		(br)		~195 <u>+</u> 3					75PIT/BU
[C4H12	osi]	(СН ₃) ₃ Si	OCH ₃ RN 182	25-61-2	~195	~816	~203	~849	
		(br)		~195 <u>+</u> 3					75PIT/BC
[C5H8]	3,3-1	Dimethyl	cyclopropen	e RN 3907-0	6-0 196*	820.	203*	849*	
				196*					76AUE/DA

Table 1. Gas phase basicities and proton affinities--Continued

	тК	Refer- ence base	Relative gas basicity	Gas basicity	ga	ected as icity		oton inity	Reference
		Dase	kcal/mol	kcal/mol			kcal/mol	kJ/mol	
[С ₅ н ₈ О ₂] c-C	₃ н ₅ соосн	1 ₃ RN 2868-3	37-3	195.1	816.	202.9	849.	
	320 320	A H	(-1.5)	194.1 195.1					83TAF
10 11 0	320	0	(6.2) CH ₃ RN 598-9	195.1	195.0	016	202.0	848.5	81BRO/ABB
1°6"12°		1)			195.0	010.	202.8	040.3	83TAF
	320 320	A H	(-1.6)	194.0 195.0					STAP
[C4H8O3] C ₂ H	₅ осоосн ₃	RN 623-53	-0	194.9	815.	202.7	848.	
	320 320	A H	(-1.7)	193.9 194.9					TAFT
	•	,3,4,5,6 RN 10	5,7,8-Octah 19-71-6	ydro-	194.8	815.	202.5	847.	
	550	Α	(-0.4)	194.8					UAM08
[C2F3H4	N) CF	3 ^{CH} 2 ^{NH} 2	RN 753-90-	2	194.7	815.	202.5	847.	
	320 320	A H	(-1.9)	193.7 194.7				7	STA/TAA-83TA
	320 320	A H	(-1.5)	194.7 194.1 195.1					75TAF-75ARN
	320	n		194.9**					79AUE/BOW
[C ₉ H ₁₁]	С ₆ н ₅	с (сн ₃) ₂	radical RN	xxxxx	194.6	814.	202.4	847.	
		(br)		194.6					82MAU
[C ₈ H ₁₄ C)] c-C	6 ^H 11 ^{COC}	H ₃ RN 823-	76-7	194.6	814.	202.4	847.	
	320 320	A H	(-2.0)	193.6 194.6					83TAF
	320	Ü	(6.4)						81BRO/ABB
[C3H3NC] Iso	oxazole	RN 288-14	-2	194.5	814.	202.3	846.	
	600	(Key)		194.5					83MAU
[C6H12C	0] t-C	₄ н ₉ сосн	3 RN 75-97	-8	194.5	814.	202.3	846.	
	320 320	A H	(-2.1)	193.5 194.5					83TAF
	320	Ü	(5.8)						81BRO/ABB
[C6H14C	0] (n-	С ₃ н ₇) ₂ 0	RN 111-43-	3	194.5	814.	202.3	846.	
	335 320	X X U	(0.0) (5.5)						82MAU 81BRO/ABB
	320 340	H H	(±7.0)	194.7					80LIA/SHO
	340		(,,,,,,	195.6**					79AUE/BOW
[C5H12	0] t-0	С ₄ н ₉ осн ₃	RN 1634-0	4-4	194.4	813.	202.2	846.	
	320 320	A H	(-2.2)	193.4 194.4					TAFT
	335	XX	(+0.2)	194.7 196.0**					82MAU 79AUE/BOW 75PIT/BUR
10 "	1 0"	(br)		~195 <u>+</u> 3	10/ 1+	* 812.**	202 1	** 846.**	, J. 11/ DOK
1 ^C 6 ^H 10	ј СH ₂ =	=c (cн ₃) c	(CH ₃)=CH ₂ F	194.1**	194.1*	- 014.**	202.1	040.^^	79AUE/BOW
[C ₉ H ₁₁] С ₆ н	(СНС ₂ Н ₅) radical F	RN xxxxx	~194	~812	~202	~845	
		(br)		~194					82MAU

Table 1. Gas phase basicities and proton affinities -- Continued

T K Refer- ence	gas	Gas basicity	. 9	lected jas	Pro affi		Reference
base	basicity kcal/mol k	cal/mol		sicity l kJ/mol	kcal/mol	kJ/mol	
[С ₈ н ₈] С ₆ н ₅ сн=сн ₂	RN 100-42-5		194.2	812.5	202.0	845.	
320 A 320 H	(-2.4)	193.2 194.2					75WOL/HAR
[C ₆ H ₁₂ O] c-C ₆ H ₁₂ O (Oxepane) RN 5	92-90-5	195	816	202	845	
300 (Key)		195					83MAU
[C ₅ FeO ₅] (CO) ₅ Fe RN	13463-40-6		~194	~812	~202	~845	
320 A (br)	(-3 <u>+</u> 3)	192.4 194					75FOS/BEA(2) 75FOS/BEA(3)
[C3H7NO2] i-C3H7ONO	RN 541-42-4	Į.	194.1	812.	201.9	845.	
(br)		194.1					78FAR/MCM
[C ₅ H ₈] (E)-1,3-Pent	adiene RN 200	4-70-8	193.4*	* 809.**	201.8*	* 844.**	
		193.4**					79AUE/BOW
[C ₁₈ H ₁₂] Chrysene	RN 218-01-9		193.8	811.	201.6	843.	
550 A	(-1.4)	193.8					80MAU
$[C_5H_{10}O_2]$ $i-C_3H_7COO$	осн ₃ RN 547-6	53-7	193.8	811.	201.6	843.	
320 A 320 H	(-2.8)	192.8 193.8					83TAF
$[c_5H_{10}O]$ $(c_2H_5)_2CO$	RN 96-22-0		193.5	810.	201.4	843.	
320 A 320 Н	(-2.8)	192.8 193.8					TAFT
320 Н 340 Н	(+6.0)	193.3					80LIA/SHO
[C ₆ H ₁₀ O] Cyclohexa	none RN 108-9	94-1	194.0	812.	201.4	843.	
300 (Key) 320 U	(4.8)	196.4 193.7					83MAU
560 (Key)		194.4					79SAL/KEB
[C ₃ H ₆ S] Thietane RM	₹ 287-27-4		194.0*	* 812.**	201.3*	* 842.**	
55		194.0**					79AUE/BOW
$[C_5H_{10}O]$ (i- C_3H_7) CO	OCH ₃ RN 563-	30-4	193.3	809.	201.1	841.	
320 A 320 H	(-3.1)	192.3 193.3					83TAF
[C ₃ H ₃ N ₃] 1,3,5-Tria	azine RN 290-	-87-9	194.5	814.	201.1	841.	
550 G	(-13.0)	194.5					79MAU
[C4H8O2S] C2H5S(OCH	H ₃)CO RN 381	03-96-7	193.2	808.	201.0	841.	
320 A 320 H	(-3.4)	192.2 193.2					TAFT
[C ₈ H ₉] C ₆ H ₅ CHCH ₃ re	adical RN xxx	х×	~193	~807	~201	~841	
(br)		~193					82MAU
[C ₆ H ₁₀] 1,2-Dimethy	ylcyclobutene	RN 1501-58-3	2 194*	812*	201*	841*	76AUE/DAV
[C ₅ H ₈] l-Methylcyc	lobutene RN x	xxxx 194*	194*	812*	201*	841*	76AUE/DAV

Table 1. Gas phase basicities and proton affinities—-Continued

$ [C_{6}H_{10}] \ c-C_{5}H_{8}=CH_{2} \ RN \ 1528-30-9 \\ 320 \ A \ (-3.2) \ \frac{192.4}{193.4} \\ [C_{9}H_{12}] \ Mesitylene \ RN \ 108-67-8 \\ 550 \ A \ (-1.4) \ 194.6 \\ [C_{7}H_{6N2}] \ m-NCC_{6}H_{4}NH_{2} \ RN \ 2237-30-1 \\ [C_{7}H_{6N2}] \ m-NCC_{6}H_{4}NH_{2} \ RN \ 2237-30-1 \\ [C_{7}H_{6N2}] \ m-NCC_{6}H_{4}NH_{2} \ RN \ 2237-30-1 \\ [C_{11}H_{10}] \ 1-Methylnaphthalene \ RN \ 90-12-0 \\ 550 \ A \ (-2.3) \ 192.9 \\ [C_{4}H_{8}O_{2}] \ CH_{3}COOC_{2}H_{5} \ RN \ 141-78-6 \\ 373 \ X \ (0.0) \ 192.9 \\ 320 \ A \ (-3.7) \ 191.9 \\ 320 \ A \ (-3.7) \ 191.9 \\ 320 \ A \ (-2.7) \ 192.5 \\ 370 \ U \ (+2.0) \ 190.7 \\ 600 \ A \ (-2.7) \ 192.5 \\ 320 \ A \ (-3.7) \ 191.9 \\ 320 \ A \ (-3.7) \ 191.9 \\ 320 \ A \ (-3.7) \ 192.8 \\ 320 \ A \ (-3.2) \ 192.8 \\ 320 $	Reference		oto	Pre aff:		ga	Gas basicity	Relative gas	Refer- ence	T K	
320 A		/mol	. kJ	kcal/mol			kcal/mol		base		
Companies Comp		11**	8	201**			3-1	RN 16972-3	0) ₅ MnH	₅] (C	(C ₅ H M nO
320 A (-3.2) 192.4 320 B (-3.2) 193.4 [C ₉ H ₁₂] Mesitylene RN 108-67-8 [C ₇ H ₆ N ₂] m-NCC ₆ H ₄ NH ₂ RN 2237-30-1 [C ₇ H ₆ N ₂] m-NCC ₆ H ₄ NH ₂ RN 2237-30-1 [C ₁ H ₁₀] 1-Methylnaphthalene RN 90-12-0 [C ₂ H ₃ C ₂ OCC ₂ H ₅ RN 141-78-6 [C ₃ H ₃ C ₂ OCC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₂ H ₅ RN 141-78-6 [C ₄ H ₃ C ₂] CH ₃ COOC ₄ H ₅ RN 141-78-6 [C ₄ H ₃ C ₄] CH ₃ COOC ₄ H ₅ RN 151-8 [C ₄ H ₃ C ₄] CH ₃ COOC ₄ H ₅ RN 151-8 [C ₄ H ₃ C ₄] CH ₃ COOC ₄ H ₇ RN 109-60-4 [C ₄ H ₃ C ₄] CH ₃ COOC ₄ H ₇ RN 109-60-4 [C ₄ H ₃ C ₄] CH ₃ COOC ₄ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH ₃ COOC ₅ H ₇ RN 109-60-4 [C ₅ H ₃ C ₄] CH	BISTE/BEA							(-3.8)	Α	320	
193.4 193.4 193.6 193.		40.	8	200.8	809.	193.4	.9	RN 1528-30-	н ₈ =Сн ₂	c-C ₅ 1	[C ₆ H ₁₀]
320	77POL/WOL							(-3.2)			
SOME		40.	8	200.7	810.	193.6		RN 108-67-8	tylene 1	Mesi	[C ₉ H ₁₂]
GOO F (-9.6) 192.9	76DEV/WOL 30MAU										
$ [C_{11}H_{10}] \ 1-Methylnaphthalene \ RN \ 90-12-0 \ 192.9 \ 807. \ 200.7 \ 840. $ $ 550 \ A \ (-2.3) \ 192.9 \ 807. \ 200.7 \ 840. $ $ [C_4H_8O_2] \ CH_3COOC_2H_5 \ RN \ 141-78-6 \ 192.9 \ 807. \ 200.7 \ 840. $ $ [C_4H_8O_2] \ CH_3COOC_2H_5 \ RN \ 141-78-6 \ 192.9 \ 807. \ 200.7 \ 840. $ $ [C_5H_{10}] \ A \ (-3.7) \ 191.9 \ 192.6 \ 370 \ U \ (+2.0) \ 190.7 \ 600 \ A \ (-2.7) \ 192.5 $ $ [C_2H_6S] \ (CH_3)_2S \ RN \ 75-18-3 \ 192.8 \ 807. \ 200.6 \ 839. $ $ [C_3H_6S] \ 2-Methylthiirane \ RN \ 1072-43-1 \ 192.8 \ 807. \ 200.6** \ 839.** $ $ [C_9H_7MnO_3] \ (CH_3C_5H_4)Mn(CO)_3 \ RN \ 12108-13-3 \ 320 \ A \ (-4.2) \ [C_5H_{10}O_2] \ CH_3COOC_3H_7 \ RN \ 109-60-4 \ 192.8 \ 807. \ 200.6 \ 839. $ $ [C_5H_{10}O_2] \ CH_3COOC_3H_7 \ RN \ 109-60-4 \ 192.8 \ 807. \ 200.6 \ 839. $ $ [C_7H_{10}] \ Bicyclo[2.2.1]hept-2-ene \ (Norbornene) \ RN \ 498-66-8 \ (Key) \ 192.6 \ (Key) \ 193.8 ** $ $ [C_6H_{10}O] \ (CH_2=CHCH_2)_2O \ RN \ 557-40-4 \ 192.6 \ 806. \ 200.4 \ 838. $		40.	8	200.7	807.	192.9)-1	2 RN 2237-30	CC ₆ H ₄ NH] m-N	[C7H6N2
S50 A	31LAU/NIS						192.9	(-9.6)	F	600	
		40.	8	200.7	807.	192.9	90-12-0	phthalene RN	ethylna] 1-M	[С ₁₁ Н ₁₀
373 X (0.0) 192.9 7977 681 7780 320 A (-3.7) 191.9 320 H 192.9 7987 7681 7780 320 B 192.9 7987 7681 7780 320 H 192.9 8181 7981 7981 801. 7681 7681 7681 7681 7681 7681 7681 7681	BOMAU						192.9	(-2.3)	A	550	
Comparison of the content of the c		40.	8	200.7	807	192.9	;	RN 141-78-6	со о с ₂ н ₅] CH ₃	[C4H8O2
	79VAJ/HAR 76KEB/YAM 77WOL/STA 81BRO/ABB 79AUE/BOW 80LIA/SHO						192.9 191.9 192.9 193.0 193.5**	(0.0) (-3.7) (+4.3) (+5.3)	X A H U	600 320 320 320 340	
320 A (-3.7) 191.9 320 H 192.8 193.4** [C ₃ H ₆ S] 2-Methylthiirane RN 1072-43-1 192.8** 192.8** 79Al [C ₉ H ₇ MnO ₃] (CH ₃ C ₅ H ₄)Mn (CO) ₃ RN 12108-13-3 320 A (-4.2) [C ₅ H ₁₀ O ₂] CH ₃ COOC ₃ H ₇ RN 109-60-4 192.8 807. 200.6** 839.** [C ₇ H ₁₀] Bicyclo[2.2.1]hept-2-ene (Norbornene) RN 498-66-8 320 P (0.5) 193.1 (Key) 191.2 193.8** 193.8** 193.8** 192.6 806. 200.4 838.	76HAR/LIN 76YAM/KEB										
192.8 193.4** 79A		39.	8	200.6	807.	192.8		75-18-3) ₂ s RN	(CH ₃	[C ₂ H ₆ S]
193.4** 79A	OL/STA-83T	77v						(-3.7)			
192.8** 192.8** 79Af [C ₉ H ₇ MnO ₃] (CH ₃ C ₅ H ₄)Mn(CO) ₃ RN 12108-13-3 320 A (-4.2) [C ₅ H ₁₀ O ₂] CH ₃ COOC ₃ H ₇ RN 109-60-4 192.8 807. 200.6** 839.** 81Sf [C ₅ H ₁₀ O ₂] CH ₃ COOC ₃ H ₇ RN 109-60-4 192.8 807. 200.6 839. 80M ₇ 79E (Norbornene) RN 498-66-8 320 P (0.5) 193.1 (Key) 191.2 193.8** 193.8** 194.5 830.5 76S 79Af 79SE (C ₆ H ₁₀ O ₁) (CH ₂ =CHCH ₂) ₂ O RN 557-40-4 192.6 806. 200.4 838.	79AUE/BOW								п	320	
	79AUE/BOW	39.**	** {	200.6*	807.**	192.8**		irane RN 107	thylthi	2-Me	[C ₃ H ₆ S]
320 A (-4.2) 8157 [C ₅ H ₁₀ O ₂] CH ₃ COOC ₃ H ₇ RN 109-60-4 192.8 807. 200.6 839. 550 A (-2.3) 192.8 807. 200.6 839. [C ₇ H ₁₀] Bicyclo[2.2.1]hept-2-ene 193.1 808. 200.4 838. (Norbornene) RN 498-66-8 320 P (0.5) 193.1 808. 200.4 838. (Key) 191.2 193.8** 193.8** 7655 7655 79A 79S. 560 (Key) 192.6 192.6 806. 200.4 838.	/ JAUL/ BOW	30 **	** !	200 6*				\ M= (CO)	CH C H	0 1 ([C 13 Mm
	81STE/BEA	37.	,	200.0			12106-13-3	-		-	1C9 ^m 7 ^{mm}
550 A (-2.3) 192.8 80M. 600 A (-2.3) 192.8 791. [C ₇ H ₁₀] Bicyclo[2.2.1]hept-2-ene 193.1 808. 200.4 838. (Norbornene) RN 498-66-8 320 P (0.5) 193.1 191.2 193.8**	01011, 011.	39	:	200 6	807	192.8					וכש ס
[C ₇ H ₁₀] Bicyclo[2.2.1]hept-2-ene 193.1 808. 200.4 838. (Norbornene) RN 498-66-8 320 P (0.5) 193.1 191.2 193.8** 193.8** 560 (Key) 192.6 192.6 192.6 192.6 192.6 192.6 200.4 838.	וומאחפ	, ,	•	200.0	007.	192.0		•		_	1C5 ⁿ 10 ^O
(Norbornene) RN 498-66-8 320	791.AII										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		38.	;	200.4	808.	193.1	ne '				
$560 \text{ (Key)} 192.6$ 798. $[C_6H_{10}O] (CH_2=CHCH_2)_2O \text{ RN } 557-40-4$ 192.6 806. 200.4 838.	77STA/WIE 76SOL/FIE 79AUE/BOW	30.5	:	198.5			191.2			320	
	79SAL/KEB								(Key)	560	
320 A (-4.0) 191.6		38.		200.4	806.	192.6	-40-4	2) ₂ 0 RN 557-	12=CHCH2) (CH	[C ₆ H ₁₀ C
320 H 192.6	TAFT						191.6 192.6	(-4.0)	A H	320 320	

Table 1. Gas phase basicities and proton affinities--Continued

т	(R	efer- ence	Relative gas	Gas basicity	g.	ected as	Pro affi		Reference
		base	basicity kcal/mol	kcal/mol	kcal/mol	icity kJ/mol	kcal/mol	kJ/mol	
(CeHal CHa	-CHC	C(CH ₂)=	CH ₂ RN 78-7	9-5	192.0**	803.**	200.4**	838.**	,
		3,		192.0**					79AUE/BOW
וֹכּיזוּ מוֹ כּיז	, oc	אם טי	100-66-3		192.5	806.	200.3	838.	
[С ₇ н ₈ 0] С ₆ 1	1500	3	100-00-3		1,2.5		200.5	030.	
500		A	(-3.1)	192.0					84SHA/BLA
600 600		J F	(+15.7) (-9.8)	191.3 192.7					76LAU/KEB 81LAU/NIS
600		Ā	(-2.7)	192.4					79LAU
[C ₄ H ₁₀ O] (C2 ^H 5	3) 20 RN	60-29-7		192.4	805.	200.2	838.	
320	0	P	(0.0)	192.6					77STA/WIE
320		A	(-3.9)	191.7				7	77WOL/STA-83TA
320 320		Н U	(+3.5)	192.6 192.4					81BRO/ABB
321	•	J	()	193.1**					79AUE/BOW
34		H	(+4.9)	192.2					80LIA/SHO
37		U	(+2.2)	190.9					76HAR/LIN
50		A	(-3.7)	191.4					84SHA/BLA 78DAV/LAU
60		A F	(-2.8) (-10.1)	192.3 192.4					81LAU/NIS
[С ₇ н ₆ 0] С ₆ 1	H ₅ CI	io rn	100-52-7		192.4	805.	200.2	838.	
32	-	A	(-3.5)	192.0					83TAF
32		Н	,,	193.0					
32		U	(+4.2)	193.1					81BRO/ABB
55		A	(-3.2)	192.0					80MAU
60 60		J A	(+15.4) (-3.0)	191.0 192.1					76LAU/KEB 79LAU
[C ₃ H ₆ O ₃] (СН ₃ (D) ₂ CO	RN 616-38-6		192.4	805.	200.2	838.	
32	0	A	(-4.2)	191.4					77WOL/STA
32	0	H		192.4					·
[С ₄ н ₈ О ₂] С	2 ^H 5	соосн3	RN 554-12-	1	192.4	805.	200.2	838.	
32		Α	(-4.2)	191.4					83TAF
32	0	Н		192.4					
[C ₇ C1H ₅ O]	4-C	1С ₆ н ₄ Сн	IO RN 104-88	-1	192.4	805.	200.2	838.	
.32		A	(-4.2)	191.4					TAFT
32	U	Н	•	192.4					
[С ₄ н ₆ 0] Сн	2 ^{=Cl}	нсосн ₃	RN 78-94-4		192.4	805.	200.2	838.	
37	3	X	(-0.5)	192.4					79VAJ/HAR
[C ₅ H ₁₀ O ₂]	С3н	7 ^{СООСН}	3 RN 623-42-	7	192.6	806.	200.1	837.	
55 55		G A	(-15.3) (-2.3)	192.3 192.9	,				79MAU 80MAU
[C ₅ H ₅ NNiO]	(C	5H5)Nil	NO RN 12071	73-7	·		200.1**	837.*	*
32		A	(-4.8)						81STE/BEA
			N 86-73-7		192.9	807.	200.0	837.	_,
20 20				102.0			-50.0		90м20
55	U	A	(-2.3)	192.9					UAMO8

тĸ	Refer- ence		Gas basicity		lected gas		oton inity	Reference
	base	basicity kcal/mol k	cal/mol		sicity l kJ/mol	kcal/mol	kJ/mol	
[C ₁₁ H ₁₀] 2-M	ethylnaj	phthalene RN	91-57-6	192.2	804.	200.0	837.	
550	A	(-3.0)	192.2					UAM08
[CC1 ₂] CC1 ₂	RN 160	5-72-7		~192.2	~804.	~200.0	~837.	
	(br)		~192.2					78AUS/LIA(2
[C ₇ FH ₆] 3-FC	6 ^H 4 ^{CH} 2	radical RN >	xxxx	~192	~803	~2 0 0	~837	
	(br)		~192					82MAU
[C ₄ H ₈ O] CH ₃ C	oc ₂ H ₅ R	N 78-93-3		192.0	803.	199.8	836.	
320 320	A H	(-4.7)	190.7 191.7					83TAF
340 600	H X	(+4.4) (-0.1)	191.6 192.8					80LIA/SHO 76KEB/YAM
[C ₅ H ₁₀ O] c-C	5 ^H 10 ^O	RN 142-68-7		191.9	803.	19 9. 7	835.5	
320	A	(-4.2)	191.4					77WOL/STA
320 320 600	U U	(+3.4) (+2.8)	192.4 192.3 191.5					81BRO/ABB 83MAU
[С ₄ н ₆ 0] Сн ₃ С	н=СНСНО	RN 4170-30-3	3	191.9	803.	199.7	835.5	
373	(Key)		191.9					79VAJ/HAR
[C ₁₀ F ₃ H ₉] 4-	CF3C6H4	C(CH ₃)CH ₂ RI	N 55186-75-9	191.9	803.	199.7	835.5	
320 320	A H	(-4.7)	190.9 191.9					TAFT
[С ₅ н ₆] с-С ₅ н	6 RN 5	42-92-7		192.5	805.	199.6	835.	
550	(br) A	(-2.7)	182.8 192.5 192.2**					81HOU/SCH 80MAU 79AUE/BOW
Thre	shold V	alue	132.2			197.8	828.	75LOS/TRA
[С ₇ н ₇] с-С ₇ н	7 radic	al RN 3551-2	7-7	192.4	805.	199.4	834.	
	(br)		192.4					80DEF/MC1
[C ₃ H ₄ O] CH ₃ C	H=CO R	N 6004-44-0		191.6	802.	199.4	834.	
320	V	(+1.6)	191.6					80ARM/HIG
[C ₁₆ H ₁₀] Flu	oranthe	ne RN 206-4	4-0			199.3	834.	
550	A	(-3.0)	192.2					UAM08
[C ₇ FH ₅ 0] 4-F	°С ₆ н ₄ Сно	RN 459-57	-4	191.4	801.	199.2	833.	
320 320	A H	(-5.1)	190.5 191.5					TAFT
[C7H7] C6H5C	CH ₂ RN	2154-56-5		191.7	802.	199.1	833.	
	(br) (br)	'alue	192.9 191.7 191.3			198.7	832.	82MAU 80DEF/MCI 78HOU/BEA

Table 1. Gas phase basicities and proton affinities--Continued

	T K Refer- ence base		gas	basicity		gas	aff	inity	Reference	
		Dase	basicity kcal/mol	kcal/mol		sicity l kJ/mol	kcal/mol	kJ/mol		
$[CH_4N]$	CH ₂ NH ₂	RN 540	88-53-8		191	· 7 9 9	199	833		
		(br)		191					81MCA/NIC	
[C ₆ H ₁₂]	(CH ₃)	2C=C(CH	₃) ₂ RN 563-	79-1			199.0	833.		
		(Key)						76G0	R/MUN-75SOL/FI	
[C ₅ H ₅] (с-С ₅ н ₅	radica	1 RN xxxxx		~191	~799	~19 9	~833		
		(br)		~191					80DEF/MCI	
[C ₄ H ₈ O ₂]	1,3-	Dioxane	RN 505-22	-6	191.2	800.	198.8	832.		
		(Key)		191.2					83MAU	
[C ₄ H ₈ O]	c-C ₄ H	1 ₈ 0 (Tet	rahydrofura	n) RN 109-99	-9 191.4	801.	198.8	831.		
	320 320	A H	(-4.9)	190.7 191.6					77WOL/STA-83TA	
	320	U	(+2.7)	191.6					81BRO/ABB	
	340	Н	(+4.0)	191.3 192.3**					80LIA/SHO 79AUE/BOW	
	500	A	(-4.7)	190.4					84SHA/BLA	
[С ₅ н ₈ 0]	Cyclo	pentano	ne RN 120-	92-3	191.5	801.	198.8	832.		
	320	Ü	(+2.6)	191.5 192.5**					81BRO/ABB 79AUE/BOW	
[C7H12]	1-Met	hylcycl	ohexene RN	591-49-1	191.0	799.	198.8	832.		
	320 320	A H	(-5.6)	190.0 191.0					77POL/WOL	
[C7H12]	c-C ₅ H	16-1,2-(CH ₃) ₂ RN 7	65-47-9	191.0	799.	198.8	832.		
	320 320	A H	(-5.8)	190.0 191.0					77POL/WOL	
[C ₁₄ H ₁₀] Pher	nanthren	e RN 85-01	8	191.6	802.	198.7	831.		
	550	A	(-3.6)	191.6					UAMO8	
[C ₁₈ H ₁₂] Trip	henylen	e RN 217-59	-4	191.4	801.	198.5	830.5		
	550	A	(-3.8)	191.4					UAM08	
[CH3NO]	HCON	1 ₂ RN 7	5-12-7		190.6	797.	198.4	830.		
	600	U	(1.9)	190.6					83MAU	
$[C_6H_{12}]$	сн ₃ сн	H=C (CH ₃)	C ₂ H ₅ RN 922	2-61-2			198.2	829.		
		(Key)						76G0	R/MUN-75SOL/FI	
[С7H6O2] С ₆ н	₅ СООН В	RN 65-85-0		189.6	793.	198.2	829.		
	600	A	(-5.5)	189.6					79LAU	
- , -	P] Met		xaphospha- N 61580-09-	-4	190.3	796.	198.1	829.		
DICYC	-			190.3					80HOD/HOU	

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer-	gas	Gas basicity	g	ected as		ton nity	Reference
	base	basicity kcal/mol b	cal/mol	kcal/mol	icity kJ/mol	kcal/mol	kJ/mol	
[C ₅ H ₈] (CH ₃)	СНССН	RN 598-23-2		190**	795**	198**	828**	
1-5-83 (37)	,		190**		,,,,			79AUE/BOW
[C2H2O] CH2C:	=O RN	463-51-4		189.5	793.	198.0	828.	
102201 020		100 01 1		20515	,,,,,	230.0	0201	
600	(Key) A	(-6.3)	189.7 189.3					79LIA 78DAV/LAU
Thres	shold V		189.0			197.3		82TRA/MCL
[C3H4] Cyclor	propene	RN 2781-85-	3	190*	795*	198*	828*	
			190*					76AUE/DAV
$[C_6H_{12}]$ (CH ₃)	2C=CHC	H ₂ CH ₃ RN 62!	5-27-4	190.1	795.	197.9	828.	
340	н	(+2.8)	190.1					78AUS/LIA
	(Key)					197.4		75SOL/FIE
	(Key)					198.0		76GOR/MUN
[C ₃ H ₆ O ₂] CH ₃ C	:00CH3	RN 79-20-9		190.0	795.	197.8	828.	
320	V	(0.0)	190.0				7.	80ARM/HIG
320 320	A H	(-6.4)	189.2 190.2				/	WOL/STA-83T
320	U	(+1.2)	190.1					81BRO/ABB
340	н	(+2.7)	190.5** 190.0					79AUE/BOW 80LIA/SHO
340	H	(+2.7)	190.0					78AUS/LIA
370	U	(+0.2)	188.9					76HAR/LIN
600 600	A X	(-5.7) (-2.9)	189.4 190.0					79LAU 76KEB/YAM
[C5H8] C-C3H		, ,		189.9	794.5	197.7	827.	7011257 11111
	_			200.00				7.7mor /0mr
320 320	A H	(-6.7)	188.9 189.9					77WOL/STA
[C2H4N2] NCCI	H ₂ NH ₂	RN xxxxx		189.6	793.	197.4	826.	
320	G	(-18.9)	189.6					
			20110	189.5	793.	197.3	825.5	83TAF
$[C_2H_5NO_2]$ C_2I	150NO K	W 109-93-3		103.3	153.	191.3	023.3	
	(br)		189.5					78FAR/MCM
[C ₆ H ₁₀] 1-Me	thylcyc	lopentene R	1 693-89-0	189.2	792.	197.0	824.	
320	A	(-7.6)	188.2					77POL/WOL
320	Н		189.2 190.4**					79AUE/BOW
[C4H10S] t-C	4HoSH	RN 75-66-1		189.2	792.	197.0	824.	
			100.0	107.2				ma ram
320 320	A H	(-7.6)	188.2 189.2					TAFT
	H_O (0×	etane) RN 5		189.6*	793.*	196.9*	824.*	
193651 0.03	-6 (0		189.6*	200.0			- ·	79AUE/BOW
[C C=11 NO 1	(O 11 \)	1= (CO) NO DY				106.04	824.**	•
		er (co) 2 no rn	9-11-6			TA0.Ax:	. 024.75	01.00= /555
320	A	(-7.7)						81STE/BEA

Table 1. Gas phase basicities and proton affinities--Continued

тк	Ref€	r- ence base	ba	gas sicit	Y	sicity		as icity	Proton affi kcal/mol	nity	ference
			kca	1/mol	KCa.	L/mol	KCa1/mo1	KU/MOI	<u> </u>	,	
(4 11 0)	(CH)		RN 67	-64-1			188.9	790.	196.7	823.	
[C3H60]	(Cn3)	200	KN 07	-01-1							01000/300
	320	U	(88.9					81BRO/ABB 83MAU
	600	Ü	(88.9 88.9					76HAR/LIN
	370 320	U A	(-7.9		87.9					77WOL/STA
	320	Н	,			88.9					
						89.9**					79AUE/BOW 80LIA/SHO
	340	н		+1.6		88.9					78AUS/LIA
	340	H		(+1.5 (-6.9		88.8 88.3					UAMOS
	550 600	A A		(-6.5		88.6					78DAV/LAU
	600	X		-3,5		89.4					76KEB/YAM
[CAHAS]		H.S	Th i oph	nene	RN 11	0-02-1	189.5	793.	196.5	822.	
(041145)	-	-	o-F-								TAFT
	320	A () \				.89 . 5 .83					81HOU/SCH
	600	(br)				.85.0					83MAU
							100 7	788.	196.5	822.	
[C7FH50] 3-FC	6H4CH	IO RN	456-	48-4		188.7	700.	190.5	022.	
	320	A		(-8.	1) 1	187.7					TAFT
	320	н		•		188.7					
				DN 5	12 25	0	188.6	789.	196.4	822.	
$[C_5H_{10}]$	(CH ₃)	2 ^{C=CI}	1Сн3	KN 5	13-35-	-9	100.0	,0,,			
	340	н		(+1.	3)]	L88.6					78AUS/LI
						189.5**			197.8		79AUE/BOW 76GOR/MUN
		(Ke							198.3		75SOL/FI
		(Ke	7)								
[C3H80]	CH ₃ O	C2H5	RN 54	0-67-	0		188.6	789.	196.4	822.	
- 3 0	•			, ,	2.	107 6					77WOL/ST
	320 320	A H		(-8.		187.6 188.6					•
	320	п				189.2**					79AUE/BO
								700	106.3	821.	
[C6H60]	C6H5	ОН	RN 108	3-95-2			188.5	789.	196.3	041.	
	550	A		(-6.	3)	188.9					UAM08
	600	Ĵ		(+11.		186.9		•			76LAU/KE
	600	A		(-7.	.1)	188.1			54 b 7 (m = 1)		79LAU 77DEF/MC
	Fo	r pro	tonati	ion or	ı O at	om: PA -	·175 <u>+</u> 4 kcal	r\wor (\)	54 K3/MO1)		//DBE/NC
(C ₁₂ H ₁₆	.l Rin	henvl	RN 9	92-52-	-4		188.3	788.	196.1	820.	
1012"1	0, 5.5										COMALI
	550	A		(-6	.9)	188.3					UAM08
[C7H14	1 (011	\ C=0	יטכט נכי	a . \ .	אי עע	***			196.1	820.	
107 ⁿ 14) (Cn3	120-0	nen (e	13/2	NH AA						= < 11 /00
		(Ke	ey)								76MAU/SC
[C4H80	2] IICC	OCH (C	H ₃) ₂ :	RN 62	5-55-8	3	188.2	787.	196.0	820.	
4 0	370			(-0		188.2					76HAR/L1
							**	~707	~106	~820	
[C2H6S	2] CH	SSCH	3 RN	624-9	2-0		~188	~787	~196	020	
		(b:				188					81KIM/BG
						-					
		2000	DM 62	7-21-	4		188**	787**	196**	820**	•
[C5H8]	C2H50	CCT3	MM OZ	,	-						79AUE/B

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer- ence	Relative gas	Gas basicity	g	ected		oton inity	Reference
	base l	basicity ccal/mol k	cal/mol	kcal/mol	icity kJ/mol	kcal/mol	kJ/mol	
[C2H3NS] CH3S	CN RN 5	56-64- 9		188.1	787.	195.9	820.	
2 3	(br)		188.1					74MCA
[C2H3N3] CH3N		56-61-6		188.1	787.	195.9	820.	
2.33	(br)		188.1					74MCA
[C ₄ H ₈] (CH ₃)		PN 115-11-		187.3	784.	195.9	820.	,
	_			107.5	701.	1,5.,	020.	
320	hold Val	ue (0.0)	187.3 187.3					77WOL/STA
340	Н	(0.0)	187.3					80LIA/SHO
320	A.	(-9.2)	188.3** 186.4					79AUE/BOW 77WOL/STA
600	A	(-8.1)	187.0					78DAV/LAU
600	X	(-5.1)	187.8					76KEB/YAM
[C7H5N] C6H5C	N RN 1	00-47-0		188.1	787.	195.9	820.	
600	J	(+11.4)	187.0					76LAU/KEB
600	A	(-7.0)	188.1					79LAU
[C ₁₆ H ₁₈] C ₆ H ₅	(CH ₂) ₄ C ₆	H ₅ RN 1083	-56-3	188.1	787.	195.9	820.	
350	R	(1.8)	188.1					80MAU/HUN
[C ₈ H ₁₀] m-xy1	ene RN 1	08-38-3		188.1	787.	195.9	820.	
. 320	J (Key)	(13.5)	188.1 184.2					76DEV/WOL 72CHO/FRA(2
[C4H5N] c-C3H	5CN R	N 5500-21-	0	187.6	785.	195.4	817.5	
320	A	(-8.9)	186.5					76STA/KLE
320	Н		187.6					
320	Ü	(-1.2)	187.7					81BRO/ABB
$[C_4H_6O]$ $CH_2=0$	(СН ₃) СНО	RN 78-85-	3	187.4	784.	195.2	817.	
373	(Key)		187.4					79VAJ/HAR
[C ₅ H ₁₀ O ₂] HC	2 (n-C ₄ H ₉) RN 592-	84-7	186.9	824.	194.8	815.	
320	A	(-9.6)	185.9					77WOL/STA
320 340	H H	(-0.4)	187.0 186.9 188.0**					80LIA/SHO 79AUE/BOW
[C4H6O2] CH30	COCOCH ₂ F	N 431-03-8		186.2	779.	194.8	815.	
	•	(-2.7)						UAME8
				187.7	785.	194.7	815.	
[C ₁₀ H ₁₂] 1,2 naphthalen				10/./	705.	T24.7	013.	
550	Α	(-7.5)	187.7					80MAU
[C ₁₀ H ₈] Naph	thalene	RN 91-20-3	;	187.8	785.5	194.7	815.	
550 600	A A	(-7.6) (-7.2)	187.6 187.9					80MAU 78LAU/SAL
[C ₃ H ₆ O] 2-Me	thuloui =		5-56-9	186.9	782.	194.7	815.	
ILODECTI Z-ME	CITATOXILE	THE UN /	. 30-7	100.5	, 52.	-2.01		

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence	gas	Gas basi c ity	g	ected as		ton nity	Reference
		base	basicity kcal/mol	kcal/mol		icity kJ/mol	kcal/mol	kJ/mol	
[C ₁₄ H ₁₄]	С ₆ н ₅	(CH ₂) ₂	.c ₆ н ₅ RN 103	-29-7	187.3	784.	194.6	814.	
	350	R	(+0.9)	187.3					80MAU/HUN
[C ₂ H ₄ S]	c-C ₂ H	H ₄ S (Th	niirane) RN 4	20-12-2	187.3	784.	194.6	814.	
		(Key)		187.3 188.5**					80AUE/WEE 79AUE/BOW
[C ₆ 0 ₆ V]	(CO)	V RN	20644-87-5				194.5**	814.**	
	320	A	(-10.3)						81STE/BE
[C4H7N]	i-C ₃ E	17CN I	RN 78-82-0		186.4	780.	194.3	813.	
	320	A	(-9.8)	185.7					77WOL/ST
	320 320	H Q	(+1.0)	186.5 186.3					76STA/KL
C411802] IICO	2 (n-C31	1 ₇) RN 110-7	4-7	186.4	780.	194.2	812.5	
	320	A	(-9.8)	187.4** 185.9					79AUE/BOV 77WOL/STA
	320 340	H	(-0.6)	186.7 186.7					80LIA/SHO
	370 600	U A	(-2.0) (-9.5)	186.8 185.6					76HAR/LII 79LAU
	600	Х	(-6.6)	186.3					76KEB/YA
[С ₃ н ₈ ѕ]	i-C ₃	H7SH	RN 75-33-2		186.3	779.	194.1	812.	
	320 320	A H	(-10.1)	185.5 186.3					TAFT
[B ₃ H ₆ N ₃] Bor	azine	RN 6569-51-3	1	186.3	779.	194.1	812.	
	298	(Key)	186.3					79D01/GRI
[С ₅ н ₉ N]	n-C ₄	H ₉ CN	RN 110-59-8		186.2	779.	194.0	812.	
	320 320	A H	(-10.2)	185.4 186.2					76STA/KLI
[C3H5O3 bicyc	P] 2, 1o[2.	6,7-Tr 2.1]he	ioxa-l-phosph ptane RN 279	na- 9-53-8	186.1	779.	194.0	812.	
	320	(Key)	186.1		•			80HOD/HO
[C ₃ H ₄ O]	СH ₂ =	СНСНО	RN 107-02-8	3	186.1	779.	193.9	811.	
	373	Q	(+0.8)	186.1					79VAJ/HA
[C ₄ H ₆ O]	c-c ₄	H ₆ (=0)	RN xxxxx		186.4	780.	193.8	811.	
	320	Ü	(-2.5)	186.4					81BRO/ABI
[C ₄ H ₈ O ₂] 1,4	-Dioxa	ne RN 123-91	l-1	186.0	778.	193.8	811.	
	320 320	A H	(-10.4)	184.8 186.0					77WOL/ST
	320 500	U A	(-2.8) (-10.5)	186.1 184.6					81BRO/ABI 84SHA/BL
				10110					0.15.111, 501
[C3F3H6		3 ^N (CH ₃	-		186.	778.	193.8	811.	
	320 320	A H	(~-10.4)	185.2 186.0					77STA/TA
				187.0**					79AUE/BOV

Table 1. Gas phase basicities and proton affinities--Continued

	т к	Refer- ence base	Relative gas basicity	Gas basicity	g	ected as icity		oton inity	Reference
		Dasc	kcal/mol	kcal/mol	kcal/mol		kcal/mol	kJ/mol	
[C ₄ H ₇ O ₂]	1,4	-Dioxyl	radical RN	4598-47-4	186.0	778.	193.8	811.	
	340	(Key)		186.0					83AUS/LUT
[C ₄ H ₁₀ 0]	t-0	₄ н ₉ он в	RN 75-65-0		185.9	778.	193.7	810.	
	600	A (Key)	(-9.2)	187** 185.9 183.2					76AUE/BOW 79LAU 77HIR/KEB
[C4H7N]	n-C ₃	H ₇ CN R	N 109-74-0		185.7	777.	193.7	810.	
	320 320	A H	(-10.7)	184.9 185.7					76STA/KLE
[B3H5N3]] B-E	Boraziny:	l radical	186.0** RN xxxxx	185.8	777.	193.6	810.	79AUE/BOW
3 3 3		(br)		185.8					76DES/POR
[C6H5NO	2] C	ьн ₅ ио ₂ г	RN 98-95-3		185.6	776.5	193.4	809.	•
	600 600	J A	(+8.9) (-9.5)	184.5 185.6					76LAU/KEB 79LAU
[C8H10]	o-x2	lene Ri	N 95-47-6		186.1	779.	193.3	809.	
	350 320	R A	(0.0) (-10.6)	186.4 185.0					80MAU/HUN 74HEH/MCI
	320 320	H J	(9.6)	185.8 184.2 184.2					76DEV/WOL 72CHO/FRA(2
	550	A	(-8.8)	186.4					UAMO8
[C3H6O2] I	ico ₂ c ₂ н ₅	RN 109-9	4-4	185.3	775.	193.1	808.	
	320	Q	(0.0)	185.3 186.4**					76STA/KLE 79AUE/BOW
	320 320	A H	(-11.0)	184.6 185.4	•				77WOL/STA
	320 340	U H	(-3.3) (-2.4)	185.6 184.9					81BRO/ABB 80LIA/SHO
	370 600	U A	(-2.0) (-10.0)	186.7 185.6					76HAR/LIN 78DAV/LAU
[C ₄ H ₆]	СH ₂ =0	сиси=си2	RN 106-99	-0	185**	774**	193**	807.5**	
				185**					79AUE/BOW
[C ₁₀ H ₁₄	} t-(C ₄ H ₉ C ₆ H ₅	RN 98-06-	6	185.2	775.	193.0	807.	
	320 320	A H	(-11.2)	184.4 185.2					74HEH/MCI
[C ₃ H ₅ N]	С2Н	CN RN	107-12-0		184.1	770.	192.6	806.	
	320 320	A H	(-12.0)	183.6 184.4					76STA/KLE
	340	H	(-3.4)	183.9 185.0**					80LIA/SHO 79AUE/BOW
[C ₄ H ₈ O]	i-C	3H7CHO R	N 78-84-2		184.8	773.	192.6	806.	
	320	A	(-11.6)	184.0					77WOL/STA
	320	Н		184.8 185.5**					79AUE/BOW

	тĸ	Refer- ence	Relative gas	Gas basicity	•	lected gas		oton inity	Reference
		base	basicity kcal/mol	kcal/mol		sicity l kJ/mol	kcal/mol	kJ/mol	
[С ₅ н ₁₀ 0] n-C	₄ н ₉ сно	RN 110-62-3		184.8	773.	192.6	806.	
	320	A	(-11.6)	184.0					77WOL/STA
	320	Н		184.8 185.5**					79AUE/BOW
[Сн ₃ NО ₂] CH ₃	ONO RN	624-91-9		184.7	773.	192.5	805.	
		(br) (br)		184.7 184.7		÷			78FAR/MCM 76MCA/PIT
[C ₉ H ₁₂]	n-c ₃	^н 7 ^С 6 ^Н 5	RN 103-65-1		184.6	772.	192.4	805.	
	320	A	(-11.8)	183.8					74HEH/MCI
	320 600	H J	(+7.5)	184.6 183.1					76YAM/KEB
[C4H40]	Fur	an RN	110-00-9		185.0	774.0	192.2	804.	
	600	(Key) (br)		185.0 183					83MAU 81HOU/SCH
[C ₉ H ₁₂]	i-C ₃	н ₇ С ₆ Н ₅	RN 98-82-8		184.3	771.	192.1	804.	
	320	A	(-11.3)	184.3					74HEH/MCI
	320 600	H J	(+7.9)	185.1 183.5					76YAM/KEB
[C ₁₀ H ₁₄] n-C	4 ^H 9 ^C 6 ^H 5	RN 104-51	-8	184.3	771.	192.1	804.	
	320	A	(-11.4)	184.2					74HEH/MCI
	320 600	H J	(+7.9)	185.0 183.5					76YAM/KEB
[C ₂ H ₆ O]	(CH ₃) ₂ 0 R	N 115-10-6		184.3	771.	192.1	804.	
	320	A	(-11.7)	183.9					77WOL/STA-83T
	320 320	U ·	(-4.0)	184.7 184.9					81BRO/ABB
	340	H	(-3.2)	184.1					80LIA/SHO
	370 373	T T	(+4.4) (+4.5)	182.8 183.1					76HAR/LIN 75SOL/HAR
	500	Ā	(-11.0)	184.1					84SHA/BLA
	600	A	(-11.1)	184.0					76YAM/KEB
	600	Х	(-7.7)	185.2 185.8**					76KEB/YAM 79AUE/BOW
[С ₃ ғн ₅ 0) CH ₃	сосн ₂ ғ	RN 430-51-3		184.2	771.	192.0	803.	
	298	(Key)		184.2					82DRU/MCM
[C ₈ H ₁₀]	р-Ху	lene	RN 106-42-3		184.6	772.	192.0	803.	
	320 320	A H	(-11.3)	184.3 185.1					74HEH/MCI
	320	J (Key)	(+8.9)	184.5 184.1					76DEV/WOL 72CHO/FRA(
[С ₃ н ₆ 0 ₂] с ₂ н		RN 79-09-4		184.0	770.	191.8	802.	,
	600 600	A X	(-11.8) (-8.2)	183.3 184.7					76YAM/KEB 76KEB/YAM
[С ₃ н ₈ 5]			N 107-03-9	101.7	183.8	769.	191.6	802.	/UNED/IAM
- 5 8-1	320	,on	(-12.6)	183.0	200.0		271.0	002.	TAFT
	320	Н	•	183.8					-

Table 1. Gas phase basicities and proton affinities--Continued

	т к	Refer- ence	Relative gas	Gas basicity	g	ected as	Prot affir		Reference
		base	basicity kcal/mol	kcal/mol	kcal/mol	icity kJ/mol	kcal/mol k	kJ/mol	
[C ₈ H ₁₀]	С ₂ н ₅	C ₆ H ₅ RI	N 100-41-4		183.8	769.	191.6	802.	
	320	A	(-12.7)	182.9				77WOL/	STA,74HEH/MC
	320 600	H J	(+7.3)	183.7 182.9					76LAU/KEB
	600	A	(-11.1)	184.0					79LAU
C4F9H2	N] (C	$F_3)_3$ CNH ₂	RN 2809-9	2-9	183.1**	766.**	191.5**	801.**	
				183.1**					79AUE/BOW
[C4H8O]	n-C ₃	H7CHO R	N 123-72-8		183.7	769.	191.5	801.	
	320	A	(-12.6)	183.0					77WOL/STA
	320 340	H H	(-3.7)	183.8 183.6					80LIA/SHO
	3.0	••	(3.,,	185.8**					79AUE/BOW
С ₂ Н ₅ Р] RN 6	c-C ₂ 569-8	H ₄ PH (Ph 12-0	osphirane)		184.2	771.	191.4	801.	
		(Key)		184.2 187.6**					80AUE/WEB 79AUE/BOW
[C ₃ H ₈ O]	i-C ₃	н ₇ 0н в	N 67-63-0		183.4	767.	191.2	800.	
	600	A	(-11.7)	183.4					79LAU
[C4H100	l n-C	AHOOH R	N 71-36-3		183.3	767.	191.1	799.5	
-4-10-	320	A A	(-13.1)	182.5			•		TAFT
	320	Н	(-13+1)	183.3					
[C ₈ F ₃ H ₅	0] p-	-CF3C6H4C	CHO RN 455~	19-6	183.2	766.5	191.0	799.	
	320 320	A H	(-13.2)	182.4 183.2					TAFT
[C4H6]	Cyclo	butene F	RN 822-35-5		183**	766**	191**	799**	
				183**					79AUE/BOW
[C ₂ H ₆ S]	С2Н	sh RN 7	75-08-1		182.9	765.	190.8	798.	
	320	Α	(-13.8)	181.8					TAFT
	320 340	H H	(-4.0)	182.6 183.3					80LIA/SHO
[C-H-0]	(HC	TCH_)_O_F	RN 6921-27-	3	183.0	766.	190.8	798.	
106601									TAFT
	320 320	A H	(-13.4)	182.2 183.0					*****
[C ₂ H ₀ O]	n-C	oHoOH Ri	N 71-23-8		183.0	766.	190.8	798.	
- 3 6 -	320		(-5.9)	183.0					81BRO/ABB
	320	Ü	(3.57	183.6**					79AUE/BOW
[C2D60]	(CD	3) 20 Ri	N 17222-37-	6	182.8	765.	190.6	797.	
	370		(14.2)						76HAR/LIN
[CoFeH				N 12080-06-7			190.6**	* 797.**	
8 8	320	5 5	(-14.2)						81STE/BEA
			(-14.2)		100 /	7.00	100.2	706	
[CHN] H	HNC	RN xxxxx			182.4	763.	190.2	/90.	0.0000 (0000
		(br)		182.4					82PAU/HEH

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence	gas	Gas basicity	ç	lected jas		oton inity	Reference
		base	basicity kcal/mol k	cal/mol		sicity L kJ/mol	kcal/mol	kJ/mol	
[С ₂ н ₄ О ₂] сн ₃ с	оон	RN 64-19-7		181.7	760.	190.2	796.	
	320	A	(-14.8)	180.8					77WOL/STA
	320 600	H A	(-13.3)	181.6 181.8					76YAM/KEB
[C ₇ H ₈]	С ₆ н ₅ Сн	a RN	108-88-3		182.0	761.	189.8	794.	
	320	A	(-13.7)	181.9					74HEH/MCI
	320 320 340 478	H J (Key) (Key) W		182.7 181.2 182.1 184.1 182.0					76DEV/WOL 77AUS/LIA 72CHO/FRA(82STO/SPL
	550 600	a J	(-11.0) (+6.3)	184.2 181.9					80MAU 76LAU/KEB 79LAU
ור ה ש	600	A CD F	(-12.1) RN 1124-18-1	183.0	182.0	761	189.8	794.	79680
[С ₇ D ₃ н ₅	340	(Key)		182.1	102.0	701.	107.0	734.	77AUS/LIA
[С ₃ н ₃ и]			RN 107-13-1	10211	181.9	761.	189.7	794.	, , , , , , , , , , , , , , , , , , , ,
3 3	320 320	A H	(-14.5)	181.1 181.9					76STA/KLE
[C ₃ H ₆ 0]		Сно	RN 123-38-6		181.8	761.	189.6	793.	
	320 320 300 340 370 600	A H H T A	(-14.4) (-5.6) (+2.5) (-13.4)	181.2 182.0 183.6** 181.7 181.1					77WOL/STA 79AUE/BOW 80LIA/SHO 75SOL/HAR 76YAM/KEB
[C ₇ FH ₇]	3-FC	5H4CH3	RN 352-70-5		181.8	761.	189.3	792.	
	478	₩ .	(-0.2)	181.8					82STO/SPL
[C6H10]	c-C ₆ i	i10 i	RN 110-83-8		181.5	759.	189.3	792.	
	340	Н	(-5.8)	181.5					80LIA/SHO
[C2H4O2] нсо	2CH ₃	RN 107-31-3		181.0	757.	188.9	790.	
	320 320	A H	(-14.7)	180.9 181.7		÷			77WOL/STA
	340 370 478 600	. Н Т W А	(-6.0) (+2.0) (-1.3) (-13.5)	181.2 180.6 180.2 181.6					80LIA/SHO 76HAR/LIN 82STO/SPL 79LAU
[H ₃ P] P	H ₃ R	ī 7803-	-51-2		180.2	754.	188.6	789.	
	320 320	A H	(-15.8)	179.8 180.5					77WOL/STA-83T
	340	Н	(-7.4)	179.9 182.5**					80LIA/SHO 79AUE/BOW
[C ₂ H ₃ N]	сн3ст	N RN	75-05-8		180.6	756.	188.4	788.	
	320 320	A H	(-15.5)	180.1 180.9					77WOL/STA
	340 600	.н А	(-6.9) (-14.5)	180.4 180.6 183.1**					80LIA/SHO 79LAU 79AUE/BOW

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer-	Relative gas	Cas basicity	g	ected as		oton inity	Reference
		base	basicity kcal/mol	kcal/mol	kca1/mol	sicity kJ/mol	kcal/mol	kJ/mol	
[C2H60]	С2н	он ви	64-17-5		180.2	754.	188.3	788.	
	320	A	(-15.8)	179.8				7	7WOL/STA-83TA
	320 370 600	H T A	(+1.3) (-14.7)	180.6 179.9 180.4 182.5**					76HAR/LIN 79LAU 79AUE/BOW
[C ₃ H ₅] (с-с ₃ н	radical	RN XXXX	:x	179.	749.	188.	787.	
		(br)		179.					80DEF/MCI
(B ₄ H ₈) 1	B ₄ H ₈	RN 120	007-71-5		180	753	188	787	
		(br)		180					72SOL/POR
[C ₂ H ₄ O]	c-C ₂ 1	H ₄ O (Ox:	irane) RN	75-21-8	180.6	756.	187.9	786.	
		(Key)		180.6 182.3**					80AUE/WEB 79AUE/BOW
[C3C1H4	N] C1	(CH ₂) ₂ CN	RN 542-76	5-7	179.9	752.	187.5	784.5	
	320 320	A H	(-16.4)	179.2 179.9					76STA/KLE
[CH ₄ S]	сн _з ѕн	RN 74-	-93-1		179.2	750.	187.4	784.	
	320	A	(-16.6)	179.0 179.7					77WOL/STA
	320 340 370 370	Н Н Т (Кеу)	(-7.9) (+0.4)	179.4 178.7 179.1					80LIA/SHO 76HAR/LIN 75SOL/HAR
[H ₂ N]	NH ₂	RN 1519	4-15-7		179	749	187	782	
2	-	(br)		179.					82DEF/HEH
[C4H6]	CH ₃ CC	CH ₃ RN 5	03-17-3		179**	749**	187**	782**	
	3	•		179**					79AUE/BOW
[C _R H ₅ NO] 4-C	NC ₆ H ₄ CHO	RN 105-0	07-7	179.2	750.	187.0	782.	
0 0	320 320	A H	(-17.1)	178.5 179.2					TAFŤ
[C3F2H4	O] CF	н ₂ сосғн ₂	RN 453-1	4-5	179	749	187	782	
	298	(Key)		179					82DRU/MCM
[С ₆ н ₃ 0 ₅	Re] (CO) ₅ ReCH	3 RN 1452	4-92-6			187**	782**	
	320	A	(-17.4)						81STE/BEA
[C ₇ FH ₇]	2-FC	6 ^Н 4 ^{СН} 3	RN 95-52-3		178.8	748.	186.6	781.	
	478	W	(-3.2)	178.8					82STO/SPL
[C2H4O]	сн ₃ с	HO RN	75-07-0		178.6	747.	186.6	781.	
	370 370 320	shold Va T T A	lue (0.0) (0.0) (-17.6)	178.6 178.6 178.0 178.7			184.6	772.	68REF/CHU 76HAR/LIN 75SOL/HAR 77WOL/STA
	320 300 340 600 600	H A N	(-0.8) (-16.1)	178.7 181.1** 178.5 179.0 177.4					79AUE/BOW 80LIA/SHO 79LAU

Table 1. Gas phase basicities and proton affinities--Continued

	Refer-	gas basicity	Gas basicity	g	ected as		oton inity	Reference
	base		kcal/mol		sicity kJ/mol	kcal/mol	kJ/mol	
[C4F3H70] C2H5	осн ₂ сі	F ₃ RN 461-	24-5	178.6	747.	186.4	780.	
320 320	A H	(-17.7)	177.9 178.6					TAFT
[C3H4] H2C=C=C	CH ₂ R	N 463-49-0		179.	749.	186.3	779.	
Thresh	old Va	alue	179.			185.3	775.	77ROS/DRA AUS/LIA
[CH ₂ S] CH ₂ S	RN 86	5-36-1		178.	745.	186.	778.	
	(br)		178					82ROY/MCM
[C2H6Hg] CH3HG	gCH ₃	RN 593-74-8		-178	744	-186	-778	
	(br)		~178					80STO/CAM
[C7FH7] 4-FC6H	H _A CH ₃	RN 352-32-	9	178.0	745.	185.8	777.	
478	M	(-4.0)	178.0					82STO/SPL
[C6F3H9O2] CF	.CO. (n	-C.H.) RN 3	67-64-6	178.0	745.	185.8	777.	
320	3002 (A	(-18.2)	177.3					77WOL/STA
320	Н	(-10.2)	178.0					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
[C5F3H7O2] CF	3 ^{CO} 2 (n	-C ₃ H ₇) RN 3	83-66-4	177.9	744.	185.7	777.	
320 320	A H	(-18.4)	177.2 177.9					77WOL/STA
[C ₃] C ₃ RN		25 2	177.5	~177	~742	~185	~775	
[C3] C3 KM	(br)	33-3	~177	-1//	~/42	~105	-,,5	83RAK/BOH
[C6M006] (CO) 6 ^{Mo}	RN 13939-06-	.5			185**	774**	
320	A	(-19.2)						81STE/BEA
[C2H5NO2] C2H	5 ^{NO} 2	RN 79-24-3		177.0	740.	184.8	773.	
340	Н	(-10.3)	177.0					80LIA/SHO
[C4F3H502] CF	3C02C2	H ₅ RN 383-6	53-1	176.8	740.	184.6	772.	
320	A	(-19.5)	176.1					77WOL/STA
320	H		176.8					
[C3HN] HCCCN	RN xx	xxx		176.	737.	184.	770.	
(D 1 D	(br)		176.	177	740	184.	770.	84RAK/BOH
[B ₅ H ₈] B ₅ H ₈		55930-58-7		177.	740.	104.	770.	70*** V /D70
	(br)		177.					78WAN/DES
$[c_6 o_6 w]$ (co)	6 ^{W R1}					184**	770**	•
320	A	(-20.3)						81STE/BEA
[C ₂ FH ₃ O ₂] CH	2FCOOF	RN 144-49-	-0	175.7	735.1	183.5	768.	
600	A	(-19.4)	175.7					76YAM/KEE
[C2C13HO2] CC	1 ₃ C001	H RN 76-03-9		175.7	735.	183.5	768.	
600	A N	(-18.3)	176.8 175.7					76YAM/KE
[C5H2] C-C5H2		142-29-0	113.1			183.4	767.5	
50 50	,	/alue				183.6	768.	HOU/BEA
	(br)		178.2			186.0	778.	80LIA/SHC

Table 1. Gas phase basicities and proton affinities--Continued

	T K	Refer- ence base	Relative gas basicity	Gas basicity	g	ected		oton inity	Reference
		Duse		kcal/mol	kcal/mol	icity kJ/mol	kcal/mol	kJ/mol	
[C ₆ H ₃ Mn	05] (0	O) 5MnCH	3 RN 1360	1-24-6	175	732	. 183	766	
	220	2	(10 0)				205++		
	320	A (br)	(-19.9)	175.			185**		81STE/BEA 79STE/BEA
[C ₆ FH ₅]	Fluc	robenze	ne RN 462-	06-6	174.8	731.4	182.6	764.	
	334	J	(+0.2)	174.8					81BOH/STO
	400	J	(-0.2)	174.6					78HAR/LIA
	600	J	(-0.8)	174.8					76LAU/KEB
	600	A	(-19.2)	175.9					79LAU
	600	N		174.8					
[BrC ₆ H ₅] Bro	mobenze	ne RN 108-	86-1	174.6	730.5	182.4	763.	
	334	J	(0.0)	174.6					81BOH/STO
[С ₂ С1н ₃	02] (H ₂ C1C00	H RN 79-11	-8	174.6	730.5	182.4	763.	
	600	A	(-19.4)	175.7					76VAM /VED
	000	N	(-10.4)	174.6					76YAM/KEB
[C ₃ H ₄]	сн _з ссн	RN 74	-99-7		174*	728*	182*	761*	
	J			174*					76AUE/DAV
[CH40]	сн ₃ он	RN 67-	56-1		174.1	728.	181.9	761.	
	320	Α	(-20.6)	175.0					77WOL/STA-83TA
	320	L	,,	173.7					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	340	Н	(-12.9)	174.4	•				80LIA/SHO
	600	A	(-19.7)	175.4					79LAU
	600	N		174.3					
[C ₆ F ₂ H ₄] 1,2-	Difluor	obenzene R	N 367-11-3	174.4	729.7	181.8	761.	
	400	J	(-0.4)	174.4					78HAR/LIA
[C6C1H5] Chlo	robenze	ne RN 108-	90-7	174.4	730.	181.7	760.	
	334	J	(-0.2)	174.4					81BOH/STO
	400	Ĵ	(-0.5)	174.3					78HAR/LIA
	600	J	(-1.0)	174.1					76LAU/KEB
	600	A	(-19.4)	175.7					79LAU
	600	N		174.6					
[C ₆ F ₂ H ₄]] 1,3	-Difluo	robenzene	RN 372-18-9	174.1	728.	181.5	759.	
	400	J	(-0.3)	174.5					78HAR/LIA
	600	A	(-20.3)	175.3					76YAM/KEB
		N		173.7					
[C ₆ F ₃ H ₃] 1,2,	4-C ₆ H ₃ F	3 RN 367-2	3-7	173.6	726.	181.4	759.	
	400	J	(-1.2)	173.6					78HAR/LIA
[C ₆ H ₆]	Benze	ne RN	71-43-2		174.6	730.5	181.3	758.5	i
	320	J	(0.0)		174.6	730.5			76DEV/WOL
	334	J	(0.0)		174.6	730.5			81BOH/STO
	400	J	(0.0)		174.8	731.4			78HAR/LIA
	600	J	(0.0)		175.6	734.7			76LAU/KEB
	320	A	(-20.3)	175.3					77WOL/STA
	320	H	/ 10 11	176.0					005 53 /000
	340	Н	(-12.1)	175.2					80LIA/SHO
	550	λ							
	550 600	A A	(-18.9) (-18.4)	176.7 177.2					80MAU 78LAU/SAL

Table 1. Gas phase basicities and proton affinities--Continued

I K	Refer- ence base	gas	Gas basicity		lected gas		oton inity	Reference
	Dase	basicity kcal/mol	kcal/mol	kcal/mo	sicity l kJ/mol	kcal/mol	kJ/mol	•
[C ₆ F ₂ H ₄] 1,4	-с ₆ н ₄ г ₂	RN 540-36	-3	173.8	727.	181.2	758.	
400	J	(-1.0)	173.8					78HAR/LIA
$[C_6F_4H_2]$ 1,2	,3,4-C ₆ H	1 ₂ F ₄ RN 551	-62-2	173.3	725.	181.1	758.	
400	J	(-1.5)	173.3					78HAR/LIA
[C ₆ F ₃ H ₃] 1,3	,5-C ₆ H ₃ F	3 RN 372-	38-3	173.7	727.	181.	757.	
400 600 600	J A N	(-0.7) (-20.7)	174.1 174.4 173.3					78HAR/LIA 79LAU
[C ₂ H ₃] C ₂ H ₃	radical	RN 2669-89	-8	~172	~720	~181	~757	
·	(br)		~172					80DEF/MCI
[C ₆ F ₄ H ₂] 1,2	,3,5-С ₆ н	1 ₂ F ₄ RN 236	7-82-0	173.2	725.	180.6	756.	
400	J	(-1.6)	173.2					78HAR/LIA
$[C_4NiO_4]$ (CO) ₄ Ni R	RN 13463-39-	3			180**	753**	
320	A	(-24.5)						81STE/BEA
[C ₆ CrO ₆] (CO) ₆ Cr RN	13007-92-6				180**	753**	
320	· A	(-24.8)						81STE/BEA
$[C_6F_5H]$ C_6HF	5 RN 36	3-72-4		172.5	722.	179.9	753.	
400	J	(-2.3)	172.5					78HAR/LIA
$[c_3H_6]$ c- c_3H	6 RN 75	-19-4		172.0	720.	179.8	752.	
340	(Key)		173.7					72CHO/FRA
$[C_6F_4H_2]$ 1,2	,4,5-С ₆ н	2F4 RN 327	-54-8	173.0	724.	179.7	752.	
400	J	(-1.8)	173.0					78HAR/LIA
[C ₃ H ₆] CH ₃ CH	=CH ₂ RN	115-07-1		171.7	718.	179.5	751.	
Thre	shold Va H	lue (-14.0)	171.7 173.3			179.5		82ROS/BUF
340 340	AA (Key)	(0.0)	171.7 173.4					80LIA/SHO 72CHO/FRA
600 600	A N	(-20.7)	174.9 173.3					76YAM/KEB
[C ₄ H ₅ NO ₂] NC	С00С ₂ Н ₅	RN 623-49-		171.7	718	179.5	751.	
320	A	(-22.0)	174.6			.		77WOL/STA
320	L		171.7					
[C2ClH2N] C1	_	RN 107-14-2		171.7	718.	179.5	751.	
320 320	A L	(-22.0)	174.6 171.7					77WOL/STA
[C ₄ H ₈] (E)-C	н _з сн=снс	H ₃ RN 624-6	54-6	171.6	718.	179.4	751.	
	shold Va							81TRA
340 340	H AA	(-14.1)	173.2 171.6					80LIA/SHO

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer- ence	Relative gas	Gas basicity	ç	ected as		oton inity	Reference
-	base	basicity kcal/mol }	cal/mol		sicity kJ/mol	kcal/mol	kJ/mol	·
[С ₃ ғ ₃ н ₃ 0 ₂] н	соосн ₂ сг	3 RN 32042	2-38-9	171.6	718.	179.4	751.	
320 320	A L	(-22.1)	174.5 171.6					77WOL/STA
CH3NO21 CH3	no ₂ rn	75-52-5		171.7	718.	179.2	750.	
298 340 340	(Key) H AA	(-14.1)	172.1 173.2 171.4	•.				78MAC/BOH 80LIA/SHO
	(Key)		~173					76MCA/PIT
[AsH ₃] AsH ₃	4-42-1	170.8	715.	179.2	750.			
320 320	A · L	(-22.8)	173.8 170.8					77WOL/STA
340 340	H AA	(-15.1)	172.2 170.8					80LIA/SHC
[C ₃ F ₃ H ₃ O ₂] С	F ₃ СООСН ₃	RN 431-47	-0	171.0	715.	178.8	748.	
320 320	A L	(-22.6)	174.0 171.0					77WOL/STA
[СН ₂ О ₂] НСОО	H RN 6	4-18-6		170.4	713.	178.8	748.	
320	A	(-23.2)	173.4					78WOL/ST
320 340	L H	(-15.4)	170.4 171.9					80LIA/SH
340 600 600	AA A N	(-23.6)	170.3 172.0 170.4					79LAU
[C ₄ F ₄ H ₄ O ₂] C	F ₃ СООСН ₂	CH ₂ F RN 16	83-88-1	170.8	715.	178.6	747.	
320 320	A L	(-22.8)	173.8 170.8					77WOL/ST
[BrCN] BrCN	RN 506	-68-3		170.5	713.	178.3	746.	
320 320	A L	(-23.1)	173.5 170.5					76STA/KLI
[C ₆ F ₆] C ₆ F ₆	RN 392	-56-3		171.3	717.	177.7	743.	
400	J	(-3.5)	171.3			•		78HAR/LI
[C ₂ Cl ₃ H ₃ O] C	1 ₃ ссн ₂ он	RN 115-2	8-0	169.6	710.	177.4	742.	
320 320	A L	(-24.0)	172.6 169.6					77WOL/STA
[C ₂ F ₂ H ₄ O] CF	2 ^{НСН} 2 ^{ОН}	RN 359-13	-7	168.4	704.5	176.2	737.	
320 320	A L	(-25.2)	171.3 168.4					77WOL/ST
[С ₂ F ₂ H ₂] СН ₂	CF ₂ RN	75-38-7		168	703	176	736	
	(br) (Key)		~172 168					75RID 76WIL/LE
[С ₂ н ₅ I] С ₂ н ₅	I RN 75	-03-6		~168	~703	~176	~736	
	(br)	~168						72BEA/HO

Table 1. Gas phase basicities and proton affinities--Continued

т к	Refer- ence	ence gas ba		g	lected gas		oton inity	Reference
	base	basicity kcal/mol }	cal/mol		sicity L kJ/mol	kcal/mol	kJ/mol	
C ₂ Cl ₃ N] CCl	CN RN	545-06-2		168.0	703.	175.8	735.5	
			171 0					77500 /683
320 320	A L	(-25.6)	171.0 168.0					77WOL/STA
[С ₃ н ₃] с-С ₃ н	3 radic	al RN xxxxx		168.7	706.	175.8	735.	
	(br)		168.7					80DEF/MCI
[C3H5] CH2=C	HCH ₂ ra	dical RN xx	xxx	168.7	706.	175.8	735.	
3 3 2	(br)		168.7					80DEF/MCI
[CClN] ClCN	RN 506	-77-4		167.9	702.	175.7	735.	
320	A	(-25.7)	170.9					76STA/KLE
320	L	·	167.9					
$[C_3H_2N_2]$ CH_2	(CN) 2	RN 109-77-3		167.4	700.	175.6	735.	
298 298	L	(0.0) (0.0)	167.4 167.4					81D0I/MCM 82DRU/MCM
320	L A	(0.0) (-25.8)	170.8					77WOL/STA
320	L	(-26.1)	167.4					79LAU
600 600	a N	(=20.±)	169.0 167.9					13000
[С ₂ FН ₃] С ₂ Н ₃	F RN	75-02-5		167.	699.	175.	732.	
	(br) (Key)		~163 167.					75RID 76WIL/LEB
[CS] CS RN	2944-0 5	-0		167	699	175	732	
	(hr)		167					78MCA
[C3F3H30] CH	3COCF3	RN 421-50-1		166.4	696.	174.2	729.	
298	L	(-0.6)	166.8					81DOI/MCM
298	L	(-1.0)	166.4					82DRU/MCM
[CHNO] HNCO	RN 75	-13-8		165.5	692.	173.3	725.	
320	M	(+1.2)	165.5					80WIG/BEA
[CF ₂] CF ₂ R	N 2154-	-59-8		164.0	686.	171.9	719.	
	(br)		164.0					77LIA/AUS
[Сн ₂ о] н ₂ со	RN 50-	00-0		164.3	687.	171.7	718.	
320	M	(0.0)	164.3					80WIG/BEA
298 300	N Y	(5.2) (1.2)	164.2 160.2					78TAN/MAC 78FRE/HAR
320	Α	(-28.3)	168.3					77WOL/STA
320	N		164.3					
	RN 74-9			163.8	685.	171.4	717.	
298 320	N A	(4.9) (-28.8)	163.9 167.7					78TAN/MAC 77WOL/STA
320	N		163.8					
340	Y	(1.0)	163.8					78FRE/HAR

Table 1. Gas phase basicities and proton affinities--Continued

			Gas basicity		lected gas	Pr aff	oton init y	Reference
	Dase	basicity kcal/mol	kcal/mol		sicity l kJ/mol	kcal/mol	kJ/mol	
[H ₂ Se] H ₂ Se	RN 778	3-07-5		163.8	685.	171.3	717.	
320 320	A N	(-28.8)	167.7 163.8					77WOL/STA
			169.4**					79AUE/BOW
[CH31] CH31	RN 74-	88-4		~163	682	~171	~715	
	(br)		~163					72BEA/HOL
[C ₂ BrH ₅] C ₂ H	5 ^{Br} RN	74-96-4		~163	~682	~171	~715	
	(br)		~163					72BEA/HOL
[н ₂ ѕ] н ₂ ѕ к				162.8	681.	170.2	712.	
340 296 298 320 320	Y N N A	(0.0) (4.6) (3.8) (-29.6)	162.8 163.6 162.8 167.0 162.9					78FRE/HAR (73HOP/BON 78TAN/MAC 77WOL/STA
550 600 600	N A N	(3.9) (-31.8)	162.7 163.8 162.2					77MAU/FIE 79LAU
	shold V	alue	10212			168.4	705.	83PRE/TZE
[C ₃ F ₄ H ₂ O] CF	2HCOCF ₂	H RN 360-5	2-1	162.	678.	170.	711.	
	(br)		162.					82DRU/MCM
[CF ₃ NO] CF ₃ N	O RN 3	34-99-6		161	674	169	707	
	(br)		161.					79FRE/HAR
[H ₂ O ₄ S] H ₂ SO	-	664-93-9		~161	~674.	~169	~707	
	(br)		~161					78SMI/MUN
[CF ₃ HO ₃ S] CF	•	RN 1493-13-		~161	~674	~169	~707	
(a r u o) ar	(br)	DN 75 00 0	~161	161.0	6 7. 4	160.0		78SMI/MUN
[С ₂ F ₃ H ₃ O] СF 298	3 ^{сп} 2 ^{оп} К	RN 75-89-8	, 161.2	161.2	674.	169.0	707.	83COL/MCM
320	A N	(-31.2)	165.4 161.3					77WOL/STA
600	A N	(-32.7)	162.9 161.2					79LAU
[С ₂ ғ ₃ н] С ₂ ғ ₃	H RN	359-11-5		~161	~674	~169	~707	
	(br)		~161					75RID
[C ₆ H ₁₂] c-C ₆	H ₁₂ RN	110-82-7		~161	~674	~169	~707	
	(br)		~161					82AUS/REB
[C ₂ F ₃ HO ₂] CF	3соон	RN 76-05-1		161.1	674.	169.0	707.	
298 320	(Key) A N	(-30.5)	161.0 165.4 162.0					82DRU/MCM 77WOL/STA
600	A N	(-32.9)	162.7 161.1					79LAU

Table 1. Gas phase basicities and proton affinities -- Continued

T K Reference	gas	Gas basicity	g	ected jas		oton inity	Reference
base	basicity kcal/mol	kcal/mol	kcal/mol	sicity kJ/mol	kcal/mol	kJ/mol	
[B ₅ H ₉] B ₅ H ₉ R N 196	524-22-7		161.	674.	169.	707.	
(br)		161.					72SOL/POR
[C2C1H5] C2H5C1 H	RN 75-00-3		161.	674.	169.	707.	
(br)		161.					72BEA/HOL
[B ₅ C ₂ H ₇] 2,4-C ₂ B ₅ H ₇	RN 20693-6	9-0	160.	669.	168.	703.	
(br)		160.		•			80DIX
[F ₃ OP] OPF ₃ RN 13	178-20-1		160.0	669.	167.8	702.	
298 K	(4.4)	160.0					83COL/MCM
$[C_4F_7N]$ C_3F_7CN	RN 375-00-8		159.6	668.	167.4	700.	
298 K	(4.0)	159.6					83COL/MCM
[CS ₂] CS ₂ RN 75-	L5 - 0		160.7	672.	167.1	699.	
550 ห	(-1.9)	160.7					77MAU/FIE
$[C_3F_5N]$ C_2F_5CN RI	N 422-04-8		159.3	666.5	167.1	699.	
298 К	(3.7)	159.3					83COL/MCM
$[C_4F_6H_4O]$ $(CF_3)_2C(C_3)$	CH ₃)OH RN 1	515-14-6	159.2	666.	167.0	699.	
298 K	(3.6)	159.2					83COL/MCM
[H ₂ 0] H ₂ 0 RN 77	32-18-5		159.0	665.	166.5	697.	
298 K 298 K 320 A	(3.4) (1.8) (-33.5)	159.0 157.4 163.1					83COL/MCM 81BOH/MAC 77WOL/STA
320 N 600 A	(0.0) (-34.7)	159.0 160.9					79 LA U
296 N	(0.0)	159.3 159.0					73HOP/BON
298 N 550 N	(0.0)	159.0 159.3					78TAN/MAC 77MAU/FIE
Threshold V		160.3 157.4			167.8 164.9		77NG/TRE 69HAN/FRA
[C2F3N] CF3CN RN	353-85-5		150.4	663.	166.1	695.	
298 К 320 А	(2.8) (-37.1)	158.4 158.5					83COL/MCM 78COR/BEA
[C2F2H2] (E)-CHFCHE	RN 1630-	78-0	158	661	166	694	
(br)		158					75RID
[BrCH ₃] CH ₃ Br RN	4-83-9		157.9	661.	165.7	693.	
(br) 298 K	(2.3)	157. 157.9					72BEA/HOL 83COL/MCM
[C ₂ F ₃ HO] CF ₃ CHO H	RN 75-90-1		157.3	658.	165.1	691.	
298 K 320 A	(1.6) (-38.2)	157.2 157.4					83COL/MCM 78COR/BEA

Table 1. Gas phase basicities and proton affinities--Continued

тк	Refer- ence	Relative gas	Gas basicity	g	ected as		oton inity	Reference
	base	basicity kcal/mol	kcal/mol		icity kJ/mol	kcal/mol	kJ/mol	
[C ₂ FH ₅] C ₂ H ₅	F RN 35	3-36-6		157.	657.	165.	690.	
	(br)		157.					72BEA/HOL
[C3F6H2O] (C	F ₃) ₂ Снон	RN 920-6	66-1	157.2	658	165.0	690.	
298	K	(1.6)	157.2					83COL/MCM
$[C_4H_{10}]$ iso-	C4H10	RN 75-28-	-5	155.5	651.	163.3	683.	
100	(Key) (Key)		156.0 162.7			163.8 162.7		76HIR/KEB 78HIR
[F ₃ P] PF ₃ R	N 7783-5	5-3		154.9	648.	163.3	683.	
298	K (br) (br)	(3.1)	158.7 154.9 155.2				78CO:	83COL/MCM 80DOI/MCM R/BEA-72BEA/HO
[C ₄ F ₉ HO] (CF	' ₃) ₃ СОН	RN 2378-0	02-1	155.3	650.	163.1	682.	
298	K	(-0.3)	155.3					83COL/MCM
[CC1H ₃] CH ₃ C	1 RN 7	4-87-3		155	648	163	682	
320	(Key) (br)		155 152					78COR/BEA 72BEA/HOL
$[C_2H_4]$ C_2H_4	RN 74-8	5-1		155.6	651.	162.6	680.	
298 298 298 Thre	K K K shold Va	(0.0) (0.0) (0.0)	155.6 155.6 155.6 155.6			162.6		81DOI/MCM 83COL/MCM 81BOH/MAC 81TRA/MCL
[C2N2] NCCN	RN xxxx	:		155.	648.	162.	679.	
	(br)		155.					84RAK/BOH
[H ₂ O ₂] H ₂ O ₂	RN 7722	2-84-1				162.	678.	
	(br)							75LIN/ALB
[02S] SO2 R	N 7446-0	9-5		154.2	645.	161.6	676.	
298	К	(~~2) (-1.4)	153.6 154.2					81D01/MCM 83COL/MCM
[C ₃ F ₆ O] (CF ₃) ₂ CO F	RN 684-16-2		153.4	642.	161.5	676.	
298 298 298 320	K (Key) A	(-2.7) (-2.2) (-39.3)	152.9 153.4 153.4 156.3					81D0I/MCM 83C0L/MCM 82DRU/MCM 78COR/BEA
[CF ₂ 0] F ₂ C0	RN 35	3-50-4		152.9	640.	160.5	671.5	
298 298	K K	(-3.2) (-2.7)	152.4 152.9					81DOI/MCM 83COL/MCM
[C ₂ F ₄ O] CF ₃ O	FO RN 3	354-34-7		152.4	638.	160.2	670.	
298 298	K K	(-3.6) (-3.2)	152.0 152.4					81DOI/MCM 83COL/MCM
(C ₃ H ₇) i-C ₃	BH7 RN	19252-53-0				15	9.8 6	69.
Thre	eshold Va	alue						79HOU/BEA

Table 1. Gas phase basicities and proton affinities--Continued

T K Refer- Relative ence gas	Gas basicity	g	ected		oton inity	Reference
base basicity kcal/mol	kcal/mol		sicity . kJ/mol	kcal/mol	kJ/mol	
[F ₂ O ₂ S] F ₂ SO ₂ RN 2699-79-8		151.6	634.	159.0	665.	
298 K (-3.8) 298 K (-3.6)	151.6 152.0					81DOI/MCM 80DOI/MCM
[S] S RN 7704-34-9		152.3	637.	158.3	662.	
Threshold Value	152.3			158.3	662.	81SMI/AUA
[HO ₂] HO ₂ RN 3170-83-0				~158.	~661.	
Threshold Value						75BRO
[Zn] Zn RN 7440-66-6				156	653	
(br)						78PO/RAD
[H ₄ Si] SiH ₄ RN 7803-62-5		~147	~615	~155	~648	
(br)	~147					73CHE/LAM
[AsF ₃] AsF ₃ RN 7784-35-2		147.	615.	155.	648.	
(br)	147					80DOI/MCM
[C ₂ H ₂] C ₂ H ₂ RN 74-86-2		146.1	611.	153.3	641.	
Threshold Value	146.1					84LIA/LIE
[CHO] HCO RN 17030-74-9				152.	636.	
Threshold Value				152.		74WAR
[COS] COS RN 463-58-1		143.	598.	151.	632.	
(br)	143					81SMI/ADA
[HI] HI RN 10034-85-2		143.	598.	150.	628.	
(br)	.143					78 POL/MUN
[C3H8] C3H8 RN 74-98-6		142.	594.	150.	628.	
(Key)	142				76HIR	/KEB-75HIR/KE
[CFH ₃] CH ₃ F RN 593-53-3		142.	594.	150.	628.	
(br)	142					72BEA/HOL
[CF ₂ H ₂] CH ₂ F ₂ RN 75-10-5		139.	581.5	147.	615.	
(br)	139.					74BLI/MCM
[CF ₃ H] CHF ₃ RN 75-46-7		139,	581.5	147.	615.	
(br)	139.					74BLI/MCM
[B ₂ H ₆] B ₂ H ₆ RN 19287-45-7				~146	~611	
(br)						73PIE/POR
[I] I RN 14362-44-8		140.4	587.	145.4	608.	
Threshold Value	140.4					78 POL/MUN
[F ₃ N] NF ₃ RN 7783-54-2		136	569	144	604	,
(br)	136					80DOI/MCM

Table 1. Gas phase basicities and proton affinities--Continued

	Gas sicity	ga			oton inity	Reference
•	il/mol }	kcal/mol	kJ/mol	kcal/mol	kJ/mol	·
[B ₄ H ₁₀] B ₄ H ₁₀ RN 18283-93-7				~144	~602	
(Key)						73PIE/POR
[C ₂ H ₆] C ₂ H ₆ RN 74-84-0		135.8	568.	143.6	601.	
298 Z (1.4) 1 ~200 (Key) 1	133.0 135.8 133.5A 141.3B					81MAC/SCH 81BOH/MAC 76HIR/KEB 76HIR/KEB
[CO] CO RN 630-08-0		134.4	562.	141.9	593.	
298 Z (0.0) 1 Threshold Value 1 Threshold Value 1 Threshold Value 1 298 O (20.9) 1	.34.4 .34.4 .36.7 .34.3 .34.5 .31.6			144.4 141.9 142.1		81BOH/MAC 73HEM/RUN 76GUY/CHU 80DYK/JON 69MAT/WAR 80BOH/MAC
[0 ₃ S] SO ₃ RN 7446-11-9	•	~130	544	~138	~577	
(br) ~1	.31					77MUN/SMI
[N ₂ 0] N ₂ 0 RN 10024-97-2		131.4	550.	136.5	571.	
	128.7 132.5					80BOH/MAC
	31.4					73HEM/RUN
[BrH] HBr RN 10035-10-6		131	548	136	569	
(br) 1 Threshold Value	131			132.9		78POL/MUN 79TIE/AND
[ClH] HCl RN 7647-01-0		127.	531.	134.8	564.	
(br) 1	.27. .29 .24					79TIE/AND 78POL/MUN 74FEH/FER
[Br] Br RN 10097-32-2		126.4	529.	132.0	552.	
Threshold Value 1	26.4					78POL/MUN
[CH ₄] CH ₄ RN 74-82-8		126.0	527.	132.0	552.	
320 S (2.1) 1 340 S (1.4) 1 340 S (1.7) 1 550 S (1.3) 1 300 S (1.5) 1 300 S (1.9) 1	.22.5 .26.5 .25.8 .26.1 .26.7 .25.9 .26.3			126.5		80BOH/MAC 75STA/BEA 75KAS/FRA LIA/AUS 77MAU/FIE 73HEM/RUN 73BOH/HEM 71CHU/BER
[CO ₂] CO ₂ RN 124-38-9		124.4	520.	130.9	548.	
Threshold Value 1 798	24.4 26.7 24.4 24.4 25.4 24.4 24.4 24.4 20.8			130.9		74WAR 76FEH/LIN 75STA/BEA 75KAS/FRA 77MAU/FIE 73HEM/RUN 73BOH/HEM 76MEI/MIT 80BOH/MAC

Table 1. Gas phase basicities and proton affinities--Continued

Real/mol		T K Refer- ence base	Relative gas basicity	Gas basicity		lected gas		oton inity	Reference
(br) Tip		Dase		kcal/mol			kcal/mol	kJ/mol	
[CF4] CF4 RN 75-73-0	[NO] NO	RN 10102-4	3-9		~119	~498	~127	~531	
(br) 7119 71ROC/SI [C1] C1 RN 22537-15-1 116.8 489. 123.0 515. Threshold Value 116.8 78POL/MI [Xe] Xe RN 7440-63-3 113.4 474. 118.6 496. 298 S (-7.2) 117.2 80BOH/MAC-76FEI 298 O (0.3) 111.0 80BOH/MAC-76FEI Threshold Value 114.8 118.1 79WIB/FI Threshold Value 114.8 118.1 79WIB/FI Threshold Value 112.2 76WIL/LG [O] O RN 17778-80-2 110.7 463. 116.3 487. 298 O (0.0) 110.7 116.3 80BOH/MAC-76FEI [KR] KR RN 7439-90-9 96.1 402. 101.6 425. 298 O (-10.3) 100.4 0' (+1.1) 96.1 BB (+1.7) 96.4 100.3 75POB/HI Threshold Value 94.7 100.3 424. 298 O (-11.8) 98.9 0' (-0.4) 94.6 396. 101.3 424. 298 O (-11.8) 98.9 0' (-0.4) 94.6 (Key) Threshold Value 94.7 101.3 72FOB/HI [K2] H ₂ RN 1333-74-0 94.6 396. 101.3 424. 298 O (-11.8) 98.9 94.6 396. 101.3 424. 298 O (-1.3) 94.7 75POB/HI (Key) Threshold Value 94.7 95.0 397. 100.9 422. 298 O (-11.8) 99.3 0' (-0.3) 94.7 75POB/HI (Key) Threshold Value 95.0 75PEH/LJ Threshold Va		(br)		~119				•	71ROC/SUT
[CI] CI RN 22537-15-1 Threshold Value 116.8 Threshold Value 116.8 Threshold Value 116.8 Threshold Value 116.8 298	[CF ₄] CE	'4 RN 75-73	-0		~119	~498	~126	~527	
Threshold Value 116.8 78POL/MI [Xe] Xe RN 7440-63-3 113.4 474. 118.6 496. 298 S (-7.2) 117.2 80BOH/MAC-76FEI 298 S (-7.2) 117.2 80BOH/MAC-76FEI [N2] N2 RN 7727-37-9 111.0 464. 118.2 494.5 290 0 (0.3) 111.0 80BOH/MAC-76FEI Threshold Value 114.3 78FON/HI Threshold Value 114.3 78FON/HI Threshold Value 110.7 463. 116.3 487. 298 0 (0.0) 110.7 110.7 463. 116.3 487. 298 0 (-10.3) 100.4 110.7 163. 116.3 487. 298 0 (-10.3) 100.4 110.7 163. 100.6 425. 298 0 (-10.3) 96.1 100.3 76HCC [RI Kr RN 7439-90-9 96.1 402. 101.6 425. 298 0 (-10.3) 96.1 100.3 79HUB/HI Threshold Value 96.1 100.3 79HUB/HI [H2] H2 RN 1333-74-0 94.6 396. 101.3 424. 298 0 (-11.8) 98.9 0' (-0.4) 94.6 0' (-0.3) 94.7 79HUB/HI [Key) Threshold Value 94.7 101.3 75PEH/LI [O2] O2 RN 7782-44-7 95.0 397. 100.9 422. 298 0 (-11.4) 99.3 0' (-0.0) 95.0 0' (-0.0) 95.0 0' (-0.0) 95.0 100.9 422. [FH] HF RN 7664-39-3 Threshold Value 95.0 75PEH/LI Threshold Value 94.6 100.5 81D1K/J Threshold Value 95.0 75PEK/J Threshold Value 95.0 75POS/BE Threshold Value 97.6 75POS/BE Threshold Value 97.6 75POS/BE Threshold Value 75.4 315. 81.0 339. Threshold Value 75.4 315. 81.0 339. Threshold Value 75.4 315. 81.0 339.	-	(br)		~119					71ROC/SUT
[Xe] Xe RN 7440-63-3	[C1] C1	RN 22537-15	-1		116.8	489.	123.0	515.	
298		Threshold Vá	lue	116.8					78POL/MUN
298 S (-7.2) 117.2 [N2] N2 RN 7727-37-9 111.0 464. 118.2 494.5 298 O (0.3) 111.0 S (-9.6) 114.8 Threshold Value [RI] KR RN 7439-90-9 298 O (-10.3) 100.4 O' (+1.1) 96.1 BB (+1.7) 96.4 Threshold Value [RI] H2 RN 1333-74-0 298 O (-11.8) 98.9 O' (-0.4) 94.6 O' (-0.4) 95.0 O' (-0.4) 99.3 O' (-0.4) 99.3 Threshold Value 298 O (-11.8) 99.3 O' (-0.0) 95.0 Threshold Value S7.3 Threshold Value S7.4 Threshold Value TFIN 75F08/BE (FI) F RN 14762-94-8 Threshold Value	[Xe] Xe	RN 7440-6	3-3		113.4	474.	118.6	496.	
298 S		298 O	(+2.7)	113.4				80вон	/MAC-76FEH/LIN
298 0 (0.3) 111.0 SOBOH/MAC-75FEE Threshold Value 110.7 463. 116.3 487. 298 0 (0.0) 110.7 116.3 80BOH/M7 76MCC [Kr] Kr RN 7439-90-9 96.1 402. 101.6 425. 298 0 (-10.3) 100.4 80BOH/M2 76MCC [H2] H2 RN 1333-74-0 94.6 396. 101.3 424. 298 0 (-11.8) 98.9 0' (-0.4) 94.6 0' (-0.3) 94.7 75PEH/LI 75PAY/SC (Key) Threshold Value 94.7 101.3 75PEH/LI 75PAY/SC (Key) Threshold Value 94.7 101.3 72COT/RC [O2] O2 RN 7782-44-7 95.0 397. 100.9 422. 298 0 (-11.4) 99.3 0' (-0.0) 95.0 0' (-0.0) 95.0 0' (-0.0) 95.0 0' Threshold Value 95.0 100.9 75PEH/LI 100.5 81DYK/JC (FH) HF RN 7664-39-3 Threshold Value 95.0 100.9 77MCC [FH] HF RN 7664-39-3 Threshold Value 75.4 315. 81.0 339.		298 S	(-7.2)	117.2					,
Company	[N ₂] N ₂	RN 7727-3	7-9		111.0	464.	118.2	494.5	
Threshold Value 110.7 463. 116.3 487. 298 0 (0.0) 110.7 16.3 80B0H/MZ 76MCC [Kr] Kr RN 7439-90-9 96.1 402. 101.6 425. 298 0 (-10.3) 100.4 0' (+1.1) 96.1 BB (+1.7) 96.4 100.3 79HUB/HI Threshold Value [H2] H2 RN 1333-74-0 298 0 (-11.8) 98.9 0' (-0.4) 94.6 0' (-0.4) 94.6 0' (-0.4) 94.6 0' (-0.3) 94.7 75FEH/LI 296 BB (0.0) 94.7 75FEH/LI 296 BB (0.0) 94.7 75FEH/LI 296 BB (0.0) 94.7 75FEH/LI 297 CREY Threshold Value 100.3 79HUB/HI 101.3 72COT/RC (Rey) Threshold Value 94.7 95.0 397. 100.9 422. 298 0 (-11.4) 99.3 80B0H/MAC-73FEN (Co2) 02 RN 7782-44-7 298 0 (-11.4) 99.3 80B0H/MAC-73FEN (Threshold Value 95.0 100.9 422. 298 0 (-11.4) 99.3 80B0H/MAC-73FEN (Fe) Threshold Value 95.0 100.9 77MCC (FH) HF RN 7664-39-3 Threshold Value 87.3 320 (Key) 109.4 117 75FOS/BE Threshold Value 75.4 315. 81.0 339. Threshold Value 75.4 315. 81.0 339. Threshold Value 75.4 315. 81.0 339.								80вон	/MAC-76FEH/LIN
Threshold Value [0] 0 RN 17778-80-2 298 0 (0.0) 110.7 Threshold Value [Kr] Kr RN 7439-90-9 298 0 (-10.3) 100.4			lue						79WIB/FIS
298									76WIL/LOS
Threshold Value [Kr] Kr RN 7439-90-9 96.1 402. 101.6 425. 298 0 (-10.3) 100.4 0' (+1.1) 96.1 BB (+1.7) 96.4 Threshold Value 100.3 79HUB/HE [H ₂] H ₂ RN 1333-74-0 94.6 396. 101.3 424. 298 0 (-11.8) 98.9 0' (-0.4) 94.6 0' (-0.3) 94.7 296 BB (0.0) 94.7 296 BB (0.0) 94.7 101.3 72COT/RC [Key) Threshold Value 94.7 95.0 397. 100.9 422. 298 0 (-11.4) 99.3 0' (0.0) 95.0 0' (0.0) 95.0 0' (0.0) 95.0 Threshold Value 94.6 396. 101.3 424. 80BOH/MAC-73FEN 101.3 72COT/RC 102] O ₂ RN 7782-44-7 95.0 397. 100.9 422. 80BOH/MAC-73FEN 0' (0.0) 95.0 0' (0.0) 95.0 Threshold Value 94.6 100.5 75FEH/LI Threshold Value 95.0 75FEH/LI Threshold Value 95.0 100.9 77MCC [FH] HF RN 7664-39-3 Threshold Value 87.3 320 (Key) 109.4 Threshold Value 75.4 315. 81.0 339. Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.	[0] 0	RN 17778-80-	2		110.7	463.	116.3	487.	
[Kr] Kr RN 7439-90-9 298				110.7					80BOH/MAC
298 0 (-10.3) 100.4	[Vr] Vr				06.3				76MCC
O' (+1.1) 96.1 BB (+1.7) 96.4 Threshold Value 298	[KI] KI				96.1	402.	101.6	425.	
Threshold Value (H2] H2 RN 1333-74-0 94.6 396. 101.3 424. 298									80BOH/MAC
[H ₂] H ₂ RN 1333-74-0 298 O (-11.8) 98.9 O' (-0.4) 94.6 O' (-0.3) 94.7 296 BB (0.0) 94.7 (Key) Threshold Value 94.7 298 O (-11.4) 99.3 O' (0.0) 95.0 Threshold Value 95.0 Threshold Value 87.3 320 (Key) 109.4 Threshold Value 75.4				96.4			100.3		/5PAY/SCH
298 0 (-11.8) 98.9 0' (-0.4) 94.6 0' (-0.3) 94.7 296 BB (0.0) 94.7 Threshold Value 94.7 298 0 (-11.4) 99.3 0' (0.0) 95.0 0' (0.0) 95.0 Threshold Value 94.6 Threshold Value 94.6 Threshold Value 95.0 Threshold Value 87.3 320 (Key) 109.4 Threshold Value 87.3 320 (Key) 109.4 Threshold Value 75.4 [Ar] Ar RN 7440-37-1 Threshold Value 75.4	[H ₂] H ₂	RN 1333-74	-0		94.6	396.		424.	
O' (-0.4) 94.6 O' (-0.3) 94.7 296 BB (0.0) 94.7 (Key) Threshold Value 94.7 298 O (-11.4) 99.3 O' (0.0) 95.0 Threshold Value 94.6 Threshold Value 94.6 Threshold Value 95.0 Threshold Value 95.0 Threshold Value 95.0 Threshold Value 95.0 Threshold Value 75.4 (Ar] Ar RN 7440-37-1 296. O' (-0.3) 95.0 Threshold Value 75.4 (Ar) Ar RN 7440-37-1 75FEH/LI 75PAY/SC 101. 78PO/RAI 75PAY/SC 101. 78PO/RAI 75PAY/SC 101. 78PO/RAI 75PAY/SC 80B0H/MAC-73FEN 75FEH/LI 75PAY/SC 100.9 75FEH/LI 75PAY/SC 101. 78PO/RAI 75PAY/SC 75FEH/LI 75PAY/SC 7		298 0	(-11.8)	98.9					/M&C_73FFN/HFN
296 BB (0.0) 94.7 75PAY/SC (Key) 75PAY/SC (Key) 101.3 75PAY/SC (Key) 101.3 75PAY/SC (Key) 101.3 75PAY/SC (Key) 101.3 72COT/RC (O2) O2 RN 7782-44-7 95.0 397. 100.9 422. 298		-	(-0.4)	94.6	•			000011	
(Key) Threshold Value 94.7 101.3 78PO/RAI 72COT/RC [O2] O2 RN 7782-44-7 95.0 397. 100.9 422. 298									75FEH/LIN 75PAY/SCH
[O ₂] O ₂ RN 7782-44-7 298			lue	94.7					78PO/RAD
298 0 (-11.4) 99.3				,,,	95.0	207		422	/2001/R02
O' (0.0) 95.0 75FEH/LI Threshold Value 94.6 100.5 81DYK/JC Threshold Value 95.0 100.9 77MCC [FH] HF RN 7664-39-3 Threshold Value 87.3 95 79TIE/AN 320 (Key) 109.4 117 75FOS/BE (FF] F RN 14762-94-8 75.4 315. 81.0 339. Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.				00.2	93.0	397.	100.9		
Threshold Value 94.6 100.5 81DYK/JG Threshold Value 95.0 100.9 77MCC [FH] HF RN 7664-39-3 Threshold Value 87.3 95 79TIE/AN 320 (Key) 109.4 117 75FOS/BE [F] F RN 14762-94-8 75.4 315. 81.0 339. Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.		0'						80BOH,	/MAC=/3FEN/HEM
Threshold Value 95.0 100.9 77MCC [FH] HF RN 7664-39-3 Threshold Value 87.3 95 79TIE/AN 120 (Key) 109.4 117 75FOS/BE [F] F RN 14762-94-8 75.4 315. 81.0 339. Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.							100 5		75FEH/LIN
Threshold Value 87.3 95 79TIE/AN 320 (Key) 109.4 117 75FOS/BE 75.4 315. 81.0 339. Threshold Value 75.4 88.6 371.									
320 (Key) 109.4 117 75F0S/BE F] F KN 14762-94-8 75.4 315. 81.0 339. Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.	[FH] HF	RN 7664-39-	3						
Threshold Value 75.4 315. 81.0 339. Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.			lue						79TIE/AND
Threshold Value 75.4 [Ar] Ar RN 7440-37-1 88.6 371.		, <u>-</u> ,		109.4					75FOS/BEA
[Ar] Ar RN 7440-37-1 88.6 371.	-			·	75.4	315.	81.0	339.	
mh				75.4					
Throshold Value							88.6	371.	
701 7255 751102/112		Threshold Val BB	lue				>61 88.6	>255 371.	79HUB/HER 82VIL/FUT

	тĸ	Refer- ence base	Relative gas basicity	Gas basicity	Selected gas basicity		oton inity	Reference
		Dase		kcal/mol	kcal/mol kJ/mol	kcal/mol	kJ/mol	
[Ne] Ne		RN 7440	0-01-9			48.1	201.	
		eshold Va eshold Va				48.1 48.0		68CHU/RUS 79HUB/HER
[He] He		RN 7440-	-59-7			42.5	178.	
	Thre	eshold Va	lue			42.5		79HUB/HER

Table 1. Gas phase basicities and proton affinities--Continued

Annotated References to Table 1

81ALD/ARR R. W. Alder, R. J. Arrowsmith, A. Casson, R. B. Sessions, E. Heilbronner, B. Kovac, H. Huber, and M. Taagepera, "Proton Affinities and Ionization Energies of Bicyclic Amines and Diamines. The Effects of Ring Strain and of 3-Electron Sigma Bonding", J. Am. Chem. Soc. 103, 6137 (1981).

ICR. Data related to TAFT scale corrected to 320 K.

80ARM/HIG M. A. Armitage, M. J. Higgins, E. G. Lewars, and R. E. March, "Methylketene. Ion Chemistry and Proton Affinity", J. Am. Chem. Soc. 102, 5064 (1980).

Time-resolved quadrupole ion store (quistor)

75ARN E. M. Arnett, "Proton Transfer and the Solvation of Ammonium Ions", in Proton Transfer Reactions, E. F. Caldin and V. Gold, Editors, pp.79-101, Chapman and Hall, London (1975). A review which includes many results from the laboratory of

R. W. Taft, some of which are not published elsewhere. See TAFT for discussion of this set of results, and how they have been treated in this evaluation.

been treated in this evaluation.

72ARN/JON E. M. Arnett, F. M. Jones, III, M. Taagepera, W. G. Henderson, J. L. Beauchamp, D. Holtz, and R. W. Taft, "A Complete Thermodynamic Analysis of the 'Anomalous Order' of Amine Basicities in Solution", J. Am. Chem. Soc. 94, 4724 (1972).

ICR. Data corrected from originally-reported temperature of 300 K to 320 K.

79AUE/BET D. H. Aue, L. D. Betowski, W. R. Davidson, M. T. Bowers, P. Beak, and J. Lee, "Gas-Phase Basicities of Amides and Imidates. Estimation of Protomeric Equilibrium Constants by the Basicity Method in the Gas Phase", J. Am. Chem. Soc. 101, 1361 (1979).

ICR. Data relative to CH₁NH₂.

79AUE/BOW D. H. Aue, and M. T. Bowers in "Gas Phase Ion Chemistry" (M. T. Bowers, editor), Chapter 9: "Stabilities of positive ions from equilibrium gas-phase basicity measurements".

ICR. A review which includes many results from the laboratory of the authors, some of which have not been published elsewhere.

*Data from earlier Aue et al papers, re-evaluated in 79AUE/BOW.

**Unpublished data from laboratory of authors

76AUE/DAV D. H. Aue, W. R. Davidson, and M. T. Bowers, "Heats of Formation of C₃H₅⁺ Ions. Allyl, Vinyl, and Cyclopropyl Cations in Gas Phase Proton Transfer Reactions", J. Am. Chem. Soc. 98, 6700 (1976). ICR.

72AUE/WEB D. H. Aue, H. M. Webb, and M. T. Bowers, "Quantitative Relative Gas Phase Basicities of Alkylamines. Correlations with Solution Basicity", J. Am. Chem. Soc. 94, 4726 (1972).

ICR.

73AUE/WEB D. H. Aue, H. M. Webb, and M. T. Bowers, "Quantitative Evaluation of Intramolecular Strong Hydrogen Bonding in the Gas Phase", J. Am. Chem. Soc. 95, 2699 (1973). ICR.

75AUE/WEB D. H. Aue, H. M. Webb, and M. T. Bowers, "Photoelectron Spectrum and Gas-Phase Basicity of Manxine. Evidence for a Planar Bridgehead Nitrogen", J. Am. Chem. Soc. 97, 4136 (1975).

ICR.

75AUE/WEB(2) D. H. Aue, H. M. Webb, and M. T. Bowers, "Proton Affinities, Ionization Potentials, and Hydrogen Affinities of Nitrogen and Oxygen Bases. Hybridization Effects", J. Am. Chem. Soc. 97, 4137 (1975).

ICR. Data relative to (CH₃)NH₂ included here; other data relative to CH₃CHO omitted because the "semiquantitative" values have been superseded by more recent equilibrium measurements.

76AUE/WEB D. H. Aue, H. M. Webb, and M. T. Bowers, "Quantitative Proton Affinities, Ionization Potentials, and Hydrogen Affinities of Alkylamines", J. Am. Chem. Soc. 98, 311 (1976).

ICŔ.

76AUE/WEB(2) D. H. Aue, H. M. Webb, M. T. Bowers, C. L. Liotta, C. J. Alexander, and H. P. Hopkins, Jr., "A Quantitative Comparison of Gas- and Solution Phase Basicities of Substituted Pyridines", J. Am. Chem. Soc. 98, 854 (1976).

ICR. Data given in graphic form, difficult to read: Values cited are from 79AUE/BOW review.

80AUE/WEB D. H. Aue, H. M. Webb, W. R. Davidson, M. Vidal, M. T. Bowers, H. Goldwhite, L. E. Vertal, J. E. Douglas, P. A. Kollman, and G. L. Kenyon, "Proton Affinities and Photoelectron Spectra of Three Membered Ring Heterocycles", J. Am. Chem. Soc. 102, 5151 (1980).

Azirane: Related to earlier results from Aue et al, which were related to NH,

Oxirane: Related to CH₃CN, C₂H₅OH. Gas basicity values chosen by authors appeared to be associated with a contracted scale. Results cited related to basicity values of 80LIA/SHO.

Thiirane. Related to CH₃COOCH₃, i-C₄H₈, HCOO(n-C₄H₉).

Results cited related to gas basicity values of 80LIA/SHO.

Phosphirane: Related to HCOO(n-C₃H₇), (CH₃)₂O, Dioxane. Results cited related to corrected TAFT scale and 80LIA/SHO.

ICR.

77AUS/LIA P. Ausloos and S. G. Lias, "Equilibrium Isotope Effects on the Proton Transfer Reactions of Methylbenzenes", J. Am. Chem. Soc. 99, 4198 (1977).

ICR. Toluene relative to propionaldehyde and methyl formate. 78AUS/LIA P. Ausloos and S. G. Lias, "Entropy Changes for the Protonation of Alkenes", J. Am. Chem. Soc. 100, 1953 (1978). ICR. Entropy changes determined.

- 78AUS/LIA(2) P. Ausloos and S. G. Lias, "Proton Affinity of Dichlorocarbene", J. Am. Chem. Soc. 100, 4594 (1978). ICR. Bracketing: CCl₂≤C₂H₅OC₂H₅
- AUS/LIA P. Ausloos and S. G. Lias, unpublished results. ICR. Bracketing: CH₃CHO < CH₂=C=CH₂ < CH₃SH
- 83AUS/LUT P. Ausloos, C. Lutz, F. Schwarz, and S. G. Lias, "Radiation-Induced Ionization and Excitation in Liquid p-Dioxane," Radiat. Phys. Chem. 19, 303 (1983).
 - From the efficiency of the reaction: $C_4H_8O_2^+ + 1,4-C_4H_8O_2 \rightarrow C_4H_8O_2H^+ + C_4H_7O_2$, the proton affinity of the $C_4H_7O_2$ radical is within 1 kcal/mol of that of p-dioxane.
- 82AUS/REB P. Ausloos, R. E. Rebbert, F. P. Schwarz, and S. G. Lias, "Pulse- and Gamma Radiolysis of Cyclohexane: Ion Recombination Mechanisms", Radiat. Phys. Chem. 19, 27 (1982). ICR. Bracketing: H₂O<c-C₆H₁₂<H₂S.
- 72BEA/HOL J. L. Beauchamp, D. Holtz, S. D. Woodgate, and S. L. Patt, "Thermochemical Properties and Ion-Molecule Reactions of the Alkyl Halides in the Gas Phase by Ion Cyclotron Resonance Spectroscopy", J. Am. Chem. Soc. 94, 2798 (1972). ICR. Bracketing:

H₂S<C₂H₄I<C₃H₆
CH₃I ~ C₂H₃Br ~ H₂S
H₂O<C₂H₃Cl<H₂S
C₂H₄<CH₃Br ~ C₂H₃F<H₂O
C₂H₂<CH₃Cl<C₂H₄
CO<CH₄F<C₂H₄

74BLI/MCM R. J. Blint, T. B. McMahon, and J. L. Beauchamp, "Gas Phase Ion Chemistry of Fluoromethanes by Ion Cyclotron Resonance Spectroscopy. New Techniques for the Determination of Carbonium Ion Stabilities", J. Am. Chem. Soc. 96, 1269 (1974).

ICR. Bracketing:

 $C_2H_2>CH_3F>CH_2F_2=CHF_3>CO>HCl>CH_4>CF_4>N_2$

73BOH/HEM D. K. Bohme, R. S. Hemsworth, H. W. Rundle, and H. I. Schiff, "Determination of Proton Affinity from the Kinetics of Proton Transfer Reactions. II. Kinetic Analysis of the Approach to the Attainment of Equilibrium", J. Chem. Phys. 58, 3504 (1973).

Flowing afterglow. Equilibrium constant determinations through measurements of forward and reverse rate constants.

80BOH/MAC D. K. Bohme, G. I. Mackay, and H. I. Schiff, "Determination of Proton Affinities from the Kinetics of Proton Transfer Reactions. VII. The Proton Affinities of O₂, H₂, Kr, O, N₂, Xe, CO₂, CH₄, N₂O, and CO", J. Chem. Phys. 73, 4976 (1980).

Flowing afterglow. Values first reported in 75SCH/BOH.

81BOH/MAC D. K. Bohme and G. I. Mackay, "Gas Phase Proton Affinities for H₂O, C₂H₄, and C₂H₆", J. Am. Chem. Soc. 103, 2173 (1981).

Flowing afterglow.

81BOH/STO D. K. Bohme, J. A. Stone, R. S. Mason, R. S. Stradling, and K. R. Jennings, "A Determination of Proton-Transfer Equilibrium Constants in Benzene/Halobenzene Mixtures at Various Temperatures Using a High Pressure Ion Source", Int. J. Mass Spectrom. Ion Phys. 37, 283 (1981).

High pressure mass spectrometer. Entropy change determinations made.

- 71BOW/AUE M. T. Bowers, D. H. Aue, H. M. Webb, and R. T. McIver, "Equilibrium Constants for Gas Phase Ionic Reactions. Accurate Determination of Relative Proton Affinity," J. Am. Chem. Soc. 93, 4314 (1971).
 ICR.
- 72BRI/YAM J. P. Briggs, R. Yamdagni, and P. Kebarle, "Intrinsic Basicities of Ammonia, Methylamines, Anilines, and Pyridine from Gas-Phase Proton-Exchange Equilibria", J. Am. Chem. Soc. 94, 5128 (1972).

High pressure mass spectrometer.

81BRO/ABB J. Bromilow, J. L. M. Abboud, C. B. Lebrilla, R. W. Taft, G. Scorrano, and V. Lucchini, "Oxonium Ions. Solvation by Single Acetonitrile Molecules in the Gas Phase and by Bulk Solvents", J. Am. Chem. Soc. 103, 5448 (1981).

- ICR. Values of $\Delta \dot{G}$ for 41 proton transfer reactions. Compounds studied did not include ammonia or isobutene, but did include acetone. Acetone was used by the present authors to tie the thermochemical ladder to other results from the laboratory (See comments under TAFT).
- 83CAS/FRE C. J. Cassady, B. S. Freiser, and D. H. Russell, "Structural Determination of $[C_7H_7O]^+$ Ions in the Gas Phase by Ion Cyclotron Resonance Spectrometry", Org. Mass Spectrom. **18**, 378 (1983).
- 79CEY/TIE S. T. Ceyer, P. W. Tiedemann, B. H. Mahan, and Y. T. Lee, "Energetics of Gas Phase Proton Solvation by NH₃", J. Chem. Phys. 70, 14 (1979).

Absolute determination of the proton affinity of NH_3 from appearance potential of NH_4^+ from $(NH_3)_2$; entropy change of the half reaction $(NH_3 \rightarrow NH_4^+)$ taken as -1.8 cal/mol K.

73CHE/LAM T. M. H. Cheng and F. W. Lampe, "SiH₅⁺ and the Proton Affinity of Monosilane", Chem. Phys. Lett. 19, 532 (1973).

Bracketing: C₂H₂, C₂H₅<SiH₄<C₃H₇

72CHO/FRA S.-L. Chong and J. L. Franklin, "Heats of Formation of Protonated Cyclopropane, Methylcyclopropane, and Ethane", J. Am. Chem. Soc. 94, 6347 (1972).

High pressure mass spectrometer; equilibria relative to CH₁OH.

72CHO/FRA(2) S.-L. Chong and J. L. Franklin, "Proton Affinities of Benzene, Toluene, and the Xylenes", J. Chem. Soc. 94, 6630 (1972).

High pressure mass spectrometer; equilibria relative to $(CH_3)_2O$.

71CHU/BER W. A. Chupka and J. Berkowitz, "Photoionization of Methane: Ionization Potential and Proton Affinity of CH₄", J. Chem. Phys. 54, 4256 (1971).

Threshold for photoionization efficiency curve of CH₅⁺ in methane.

83COL/MCM S. M. Collyer and T. B. McMahon, "The Proton Affinity of Water. A Scale of Gas Phase Basicities Including Ethylene and Water from Ion Cyclotron Resonance Proton Transfer Equilibria Measurements", J. Phys. Chem. 87, 909 (1983).

ICR. Equilibrium reported between PF₃ and CF₃CN contradicts carlier bracketing results (80DOI/MCM and 78COR/BEA).

76COO/KAT M. J. Cook, A. R. Katrisky, M. Taagepera, T. D. Singh, and R. W. Taft, "Application of Ion Cyclotron Resonance Spectroscopic Gas Phase Basicities to the Study of Tautomeric Equilibria" J. Am. Chem. Soc. 98, 6048 (1976).

ICR. Data related to TAFT scale, corrected to 320 K.

77COO/KRU R. G. Cooks and T. L. Kruger, "Intrinsic Basicity Determination Using Metastable Ions", J. Am. Chem. Soc. 99, 1279 (1977).

Dissociation of proton bound dimers indicates $C_4H_9NH_2 < C_5H_{11}NH_2$; $C_6H_5NH_2 < 3-CH_3C_6H_4NH_2$; $n-C_4H_9NH_2 < c-C_5H_4N$: Results not included.

76COR/BEA R. R. Corderman and J. L. Beauchamp, "Ion Chemistry and Gas Phase Basicity of Nickelocene by Ion Cyclotron Resonance Spectroscopy", Inorg. Chem. 15, 665 (1976).

ICR. Data relative to $(CH_3)_3N$ and $(C_2H_5)_2NH$; both related to TAFT scale, T=320 assumed.

78COR/BEA R. R. Corderman and J. L. Beauchamp, "Properties of Phosphorus Trifluoride in the Gas Phase by Ion Cyclotron Resonance Spectroscopy. Energetics of Formation of PF₂⁺, PF₄⁺, HPF₃⁺, and CH₃PF₃⁺", Inorg. Chem. 17, 1585 (1978).

ICR. Equilibrium between PF_3 and CH_3Cl observed, but K could not be measured.

Values marked with (*) are cited in this paper as "Koppel and Taft, unpublished data".

72COT/ROZ R. J. Cotter, R. W. Rozett, and W. S. Koski, "Reactions of H_2O^+ and D_2O^+ with Molecular Hydrogen. I. Proton Affinity of Hydrogen", J. Chem. Phys. 57, 4100 (1972). Observed onset of reaction: $(H_2O^+ + H_2 \rightarrow H_3^+ + OH)$ as a

function of energy.

78DAV/LAU W. R. Davidson, Y. K. Lau, and P. Kebarle, "Gas Phase Dissociation of Protonated Acetic Acid to the Acyl Cation and Water. Heat of Formation of CH₂CO⁺ and the Proton Affinity of Ketene", Can. J. Chem. 56, 1016 (1978).

High pressure mass spectrometer.

82DEF/HEH D. J. DeFrees, W. J. Hehre, R. T. McIver, Jr., and D. H. McDaniel, "Heat of Formation and Adiabatic Electron Affinity of NH2", J. Phys. Chem. 83, 232 (1979). ICR. Bracketing: NH2~CH3SH

77DEF/MCI D. J. DeFrees, R. T. McIver, Jr., and W. J. Hehre, "The Proton Affinities of Phenol," J. Am. Chem. Soc. 99, 3853

ICR. Bracketing. D+ transfer from C₆H₅OHD+ observed with propylene, not with HCN.

80DEF/MCI D. J. DeFrees, R. T. McIver, Jr., and W. J. Hehre, "Heats of Formation of Gaseous Free Radicals via Ion Cyclotron Double Resonance Spectroscopy", J. Am. Chem. Soc. 102, 3334 (1980).

ICR. Bracketing:

 $(C_2H_5)_2S < C_6H_5O < i-C_3H_7OC_2H_5$ CH₁COOCH₁<C₆H₅CH₂<c-C₄H₈O $CH_3COC_2H_5 < c-C_7H_7 < i-C_3H_7COCH_3$ $C_5H_5 < C_2H_5OC_2H_5$ NCCH2CN < c-C3H3 < CF3COOCH3 NCCH₂CN < C₃H₅ < CF₃COOCH₃ $CH_1CHO < c-C_1H_1 < C_2H_1OH$ CF₃COOCH₃<C₂H₃<CH₃OH

76DES/POR A. J. DeStetano and R. F. Porter, "Ion-Molecule Reactions of Cyclic Borazine Cations. Thermodynamic and Kinetic Considerations", J. Phys. Chem. 80, 2818 (1976).

Photoionization mass spectrometer. Bracketing:

 $HCOOC_2H_5 < H_2B_3N_3H_3 < H_3B_3N_3H_3$

76DEV/WOL J. L. Devlin, III, J. F. Wolf, R. W. Taft, and W. J. Hehre, "The Proton Affinity of Toluene," J. Am. Chem. Soc. 98, 1990 (1976).

ICR. Results related to TAFT scale. Temperature assumed to be 320 K.

77DIT/NIB H. Dits, N. M. M. Nibbering, and J. W. Verhoeven, "A MINDO/3 and Ion Cyclotron Resonance Study of Some C₇H₇O⁺ Ions," Chem. Phys. Lett. **51**, 95 (1977).

ICR. Bracketing. Details not given.

80DIX D. A. Dixon, "Relative Proton Affinities of 1,6-C₂B₄H₆ and 2,4-C₂B₅H₇", Inorg. Chem. 19, 593 (1980).

ICR. Bracketing:

 $NH_{3} < C_{2}B_{4}H_{6} < C_{6}H_{5}NH_{2}$ $H_2O\!<\!C_2B_5H_7\!<\!CF_3CH_2OH$

79DOI/GRE C. E. Doiron, F. Grein, T. B. McMahon, and K. Vasudevan, "An ab initio and Ion Cyclotron Resonance Study of the Protonation of Borazine," Can. J. Chem. 57, 1751 (1979). ICR. Borazine vs. HCOOC₂H₅, c-C₄H₈O₂

80DOI/MCM C. E. Doiron and T. B. McMahon, "Nucleophilic Addition-Elimination Reactions of Weak Bases with the Trifluoroarsonium Ion in the Gas Phase by Ion Cyclotron Resonance Spectroscopy", Inorg. Chem. 19, 3037 (1980).

ICR. Bracketing:

CH₃F<AsF₃<CF₂O CO<NF3<CH3F $SO_2 < PF_3 < C_2H_4$

81DOI/MCM C. E. Doiron and T. B. McMahon, "Gas Phase Basicities of Fluorocarbonyl Compounds. An Ion Cyclotron Resonance Investigation of the Effects of Fluorine and Trifluoromethyl Substituents on Hydroxy Carbonium Ion Stabilities", Can. J. Chem. 59, 2689 (1981).

ICR. Data relative to ethylene and CH₂(CN)₂.

82DRU/MCM D. F. Drummond and T. B. McMahon, "Gas Phase Ion Chemistry and Basicities of Fluorinated Acetones: An Ion Cyclotron Resonance Study of the Effects of Multiple Fluorine Substitution on Reactivities of Fluoroketones and Stabilities of Protonated Carbonyl Compounds", Int. J. Mass Spectrom. Ion Phys. 42, 265 (1982).

ICR:

CH₂FCOCH₃ vs. HCOOC₂H₅, (CH₃)₂O CH,FCOCH,F vs. CH,CHO, CH,SH CF₃COCH₃ vs. HCOOH, CH₂(CN)₂, H₂S CHF₂COCHF₂ vs. H₂S CF, COOH vs. CHF, COCHF, CF₃COCF₃ vs. SO₂, CF₂O

81DYK/JON J. M. Dyke, N. B. H. Jonathan, A. Morris, and M. J. Winter, "Vacuum Ultraviolet Photoelectron Spectroscopy of Transient Species. Part 13. Observation of the X3A" State of HO₂+," Molecular Physics 44, 1059 (1981).

Photoelectron spectroscopy. First adiabatic IP of HO₂= 11.35±0.01 eV.

81ELL/DIX M. R. Ellenberger, D. A. Dixon, and W. E. Farneth, "Proton Affinities and the Site of Protonation of Enamines in the Gas Phase", J. Am. Chem. Soc. 103, 5377 (1981). ICR. Bracketing:

 $(CH_2=CHCH_2CH_2)_3N>CH_3CH=CHN(CH_3)_2\sim (CH_3)_2C=CHN(CH_3)_2$ $\sim c - C_5 H_{10} N(CH_3) > 1.3 - c - C_3 H_3 N_2 (CH_3)$

 $(C_2H_5)_3N < CH_3CH = C(C_2H_5)N(CH_3)_2 = (CH_3)_2NCH_2CH_3N(CH_3)_3$ $CH_3CH = C(CH_3)N(CH_3)_2 > (CH_3)_2NCH_2CH_2N(CH_3)_2$

 $< CH_3CH = C(C_2H_5)N(CH_3)_2$ $(n-C_3H_7)_2NH < c-C_3H_3N_3(CH_3) < (CH_3)_2C = CHN(CH_3)_2 < (i-C_2H_7)_2NH$ $(CH_3)_2N(CH_2)_3NH_2 < CH_3CH = C(CH_3)N(CH_3)_2 < (CH_3)_2NCH_2CH_2N(CH_3)_2$

 $c-C_5H_{10}NH < CH_2 = CHN(CH_3)_2 < c-C_3H_3N_3(CH_3)$ $1,3-C_6H_4(CH_3)(NH_2) < CH_3CH = NH < 2-ClC_5H_4N$

79ELL/EAD M. R. Ellenberger, R. A. Eades, M. W. Thomsen, W. E. Farneth, and D. A. Dixon, "Proton Affinities of Ethylidenimine and Vinylamine", J. Am. Chem. Soc. 101, 7151 (1979).

ICR. Bracketing:

 $3-CH_3C_6H_4NH_2 < C_2H_5N < 2-ClC_5H_4N$

81FAH/FEH D. W. Fahey, F. C. Fehsenfeld, and E. E. Ferguson, "Reactions of Si+ with H2O and O2 and SiO+ with H2 and D2", J. Chem. Phys. 75, 669 (1981).

Flowing afterglow. Observation of:Si⁺ + H₂O →SiOH⁺ + H gives $\Delta_t H$ of SiOH⁺<185.9 kcal/mol or PA(SiO)>156 kcal. SiOH⁺ transfers a proton to NH₃: $PA(SiO) < PA(NH_3)$. Because these limits are so wide, data not given in the tables.

78FAR/MCM R. Farid and T. B. McMahon, "Gas Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy", Int. J. Mass Spectrom. Ion Phys. 27, 163 (1978).

ICR. Bracketing:

(CH₃)₂O < CH₃ONO < HCOOC₂H₅ (CH₁),CO<C,H,ONO<CH,COOCH, $(C_2H_5)_2O < i-C_3H_7ONO < NH_3$ $NH_3 < t-C_4H_9ONO < Pyrrole$

74FEH/FER F. C. Fehsenfeld and E. E. Ferguson, "Rate Constants for the Reactions $Cl^+ + H_2 \rightarrow HCl^+ + H$ and $ClH^+ + H_2 \rightarrow$ ClH₂+ + H", J. Chem. Phys. 60 5132 (1974).

Flowing afterglow.

75FEH/HOW F. C. Felisenfeld, C. J. Howard, and A. L. Schmeltekopf, "Gas Phase Ion Chemistry of HNO3", J. Chem. Phys. 63, 2835 (1975).

Flowing afterglow. Bracketing: H₂O<HNO₃<NH₃. Because limits are so wide, results not included in table of relative gas phase basicities.

75FEH/LIN F. C. Fehsenfeld, W. Lindinger, and D. L. Albritton, "A Study of the Isoenergetic Reaction $H_3^+ + O_2 \rightleftharpoons O_2H^+ +$ H₂", J. Chem. Phys. 63, 443 (1975). Flowing afterglow.

76FEH/LIN F. C. Fehsenfeld, W. L. Lindinger, H. I. Schiff, R. S. Hemsworth, and D. K. Bohme, "Determination of the Proton Affinity from the Kinetics of Proton Transfer Reactions. VI. The Relative Proton Affinities of N2, Xe, and CO2", J. Chem. Phys. 64, 4887 (1976).

Flowing afterglow. Entropy change determination.

73FEN/HEM P. F. Fennelly, R. S. Hemsworth, H. I. Schiff, and D. K. Bohme, "Determination of the Proton Affinity from the Kinetics of Proton Transfer Reactions. IV. The Equilibrium $O_2H^+ + H_2 \rightleftharpoons H_3^+ + O_2$ and the Relative Proton Affinity of O_2 and H_2 ", J. Chem. Phys. **59**, 6405 (1973).

Flowing afterglow.

- 78FON/HUD S. N. Foner and R. L. Hudson, "Determination of the Proton Affinity of N₂ from Ionization Data on trans-Diimide", J. Chem. Phys. 68, 3169 (1978).
- 72FOS/BEA M. S. Foster and J. L. Beauchamp, "Gas Phase Ion Chemistry of Azomethane by Ion Cyclotron Resonance Spectroscopy", J. Am. Chem. Soc. 94, 2425 (1972).

ICR. Bracketing:

 $NH_3 < CH_3N = NCH_3 < CH_3NH_2$ $NH_3 < CH_2N_2 < CH_3N = NCH_3$

75FOS/BEA M. S. Foster and J. L. Beauchamp, "Proton Affinity and Gas Phase Ion Chemistry of Hydrogen Fluoride," Inorg. Chem. 14, 1229 (1975).

ICR. Equilibrium observed between HF and N2.

75FOS/BEA(2) M. S. Foster and J. L. Beauchamp, "Ion-Molecule Reactions and Gas Phase Basicity of Ferrocene", J. Am. Chem. Soc. 97, 4814 (1975).

ICR. Bracketing:

 $CH_3N = NCH_3 < (C_5H_5)_2Fe < CH_3NH_2$.

75FOS/BEA(3) M. S. Foster and J. L. Beauchamp, "Gas Phase Ion Chemistry of Iron Pentacarbonyl by Ion Cyclotron Resonance Spectroscopy. New Insights into the Properties and Reactions of Transition Metal Complexes in the Absence of Complicating Solvation Phenomena", J. Am. Chem. Soc. 97, 4808 (1975). ICR. Bracketing:

 $((CH_3O)_2CO < Fe(CO)_5 < NH_3)$

74FOS/WIL M. S. Foster, A. D. Williamson, and J. L. Beauchamp, "Photoionization Mass Spectrometry of trans-Azomethane", Int. J. Mass Spectrom. Ion Phys. 15, 429 (1974).

Equilibrium vs. CF₂HCH₂NH₂; related to TAFT scale; Temperature of 320 K assumed.

78FRE/HAR C. G. Freeman, P. W. Harland, and M. J. McEwan, "The Equilibrium Systems H₃CO⁺ (HCN, HCHO) H₂CN⁺, H₃CO⁺ (H₂S, HCHO) H₃S⁺ and the Relative Proton Affinities of HCHO, HCN, and H₂S", Int. J. Mass Spectrom. Ion Phys. 28, 19 (1978).

Flowing afterglow.

78FRE/HAR(2) C. G. Freeman, P. W. Harland, and M. J. McEwan, "The Equilibrium H₃S⁺ + HCN = H₂CN⁺ + H₂S and the Relative Proton Affinities of HCN and H₂S", Int. J. Mass Spectrom. Ion Phys. 27, 77 (1978). Flowing afterglow.

79FRE/HAR C. G. Freeman, P. W. Harland, and M. J. McEwan, "The Positive Ion Chemistry of Trifluoronitrosomethane, CF₃NO", Int. J. Mass Spectrom. Ion Phys. 30, 285 (1979). Flowing afterglow. Bracketing:

 $H_2O < CF_3NO < HCN$

75FRE/KEB M. French and P. Kebarle, "Protolysis of C₂H₇⁺ and Other Ion-Molecule Reactions in Methane Containing Traces of Ethane", Can. J. Chem. **53**, 2668 (1975).

High pressure mass spectrometer. Determination of equilibrium constant of $(C_2H_7^+ + CH_4 \rightleftharpoons CH_5^+ + C_2H_6)$. 76GOR/MUN A. Goren and B. Munson, "Thermochemistry of Alkyl

76GOR/MUN A. Goren and B. Munson, "Thermochemistry of Alkyl Ions", J. Phys. Chem. 80, 2848 (1976).

Relative values for heats of formation of alkyl ions from hydride transfer equilibrium constant determinations; absolute values assigned relative to $t-C_4H_9^+=165.8$ kcal/mol.

- 76GUY/CHU P. M. Guyon, W. A. Chupka and J Berkowitz, "Photoionization Mass Spectrometric Study of Formaldehyde H₂CO, HDCO, and D₂CO", J. Chem. Phys. 64 1419 (1976).
- 69HAN/FRA M. A. Haney and J. L. Franklin, "Heats of Formation of H₃O⁺, H₃S⁺, and NH₄⁺ by Electron Impact", J. Chem. Phys. 50, 2028 (1969).
- 73HAR/CRO H. H. Harris, M. G. Crowley, T. R. Grossheim, P. J. Woessner, and J. J. Leventhal, "Binding Energy of H₃+", J. Chem. Phys. 59, 6181 (1973).

Measured onset of $H_3^+ + He \rightarrow H^+ + H_2 + He$

78HAR/LIA K. G. Hartman and S. G. Lias, "Proton Transfer

Equilibria in Halobenzene Systems: Entropy Changes and Relative Proton Affinities", Int. J. Mass Spectrom. Ion Phys. 28, 213 (1978).

ICR. Entropy change determinations included.

76HAR/LIN A. G. Harrison, P.-H. Lin, and C. W. Tsang, "Proton Transfer Reactions by Trapped Ion Mass Spectrometry", Int. J. Mass Spectrom. Ion Phys. 19, 23 (1976).

Trapped ion mass spectrometry.

74HEH/MCI W. J. Hehre, R. T. McIver, Jr., J. A. Pople, and P. v. R. Schleyer, "Alkyl Substituent Effects on the Stability of Protonated Benzene," J. Am. Chem. Soc. 96, 7162 (1974).
ICR. Data related to TAFT scale; temperature assumed to be

320 K.

73HEM/RUN R. S. Hemsworth, H. W. Rundle, D. K. Bohme, H. I. Schiff, D. B. Dunkin, and F. C. Fehsenfeld, "Determination of Proton Affinity from the Kinetics of Proton Transfer Reactions. III. The Measurement of the Equilibrium Constant at Various Temperatures", J. Chem. Phys. 59, 61 (1973).

 ΔH and ΔS measurements for CO₂-CH₄ and N₂O-CO systems. Flowing afterglow. [196 to 553 K].

83HEN/FRE M. L. Hendewerk, R. Frey, and D. A. Dixon, "Effect of Substituting Silicon for Carbon on Molecular Proton Affinities," J. Phys. Chem. 87, 2026 (1983).

ICR. Bracketing:

 $\begin{array}{cccc} (CH_3)_3N \; < \; (CH_3)_3SiN(CH_3)_2 \; \sim \; (C_2H_5)_2NH \; < \\ & (iso-C_3H_7)(CH_3)N \end{array}$

72HEN/TAA W. G. Henderson, M. Taagepera, D. Holtz, R. T. McIver, Jr., J. L. Beauchamp, and R. W. Taft, "Methyl Substituent Effects in Protonated Aliphatic Amines and Their Radical Cations", J. Am. Chem. Soc. 94, 4728 (1972).

ICR. Related to TAFT scale; temperature assumed to be 320 K

82HEN/WEI M. L. Hendewerk, D. A. Weil, T. L. Stone, M. R. Ellenberger, W. E. Farneth, and D. A. Dixon, "Proton Affinity and Ion-Molecule Reactions of a Simple Silyl Enol Ether", J. Am. Chem. Soc. 104, 1794 (1982).
ICR. Bracketing:

 $(CH_3)_3NH < CH_3 = C(CH_3)OSi(CH_3)_3 < t-C_4H_9NH_3$

78HIR K. Hiraoka, "Endothermic Ion-Molecule Reactions: The Reactions of H₃O⁺ and H₃S⁺ with Isobutane", Int. J. Mass Spectrom. Ion Phys. 27, 139 (1978).

High pressure mass spectrometer. Arrhenius plots of k_{Rn} for $H_3O^+ + i-C_4H_8$ and $H_3S^+ + i-C_4H_8$.

75HIR/KEB K. Hiraoka and P. Kebarle, "Information on the Proton Affinity and Protolysis of Propane from Measurement of the Ion Cluster Equilibrium: $C_2H_5^+ + CH_4 = C_3H_9^{+*}$, Can. J. Chem. 53, 970 (1975).

High pressure mass spectrometer. $\Delta H[C_2H_5^+ + CH_4 \rightleftharpoons C_3H_9^+] = -6.6 \text{ kcal/mol}$

76HIR/KEB K. Hiroaka and P. Kebarle, "Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C₂H₇⁺ Ions and Some Higher Analogues: C₃H₉⁺ and C₄H₁₁⁺", J. Am. Chem. Soc. **98**, 6119 (1976).

High pressure mass spectrometer. A and B: The heat of formation of $C_2H_7^+$ was determined from the equilibrium constant for the process: $C_2H_5^+ + H_2 \rightarrow C_2H_7^+$. Different values were obtained at low and at high temperature regimes. The authors interpret this as evidence for two $C_2H_7^+$ structures.

The heat of formation of $C_3H_9^+$ was determined from the equilibrium constant for the process: $C_2H_5^+ + CH_4 \rightleftharpoons C_3H_9^+$ and that of $C_4H_{11}^+$, from the equilibrium constant for the process: $\sec{-C_3H_7^+} + CH_4 \rightleftharpoons C_4H_{11}^+$. Values reported in the paper have been modified slightly to take into account more recent values for heats of formation of relevant ions.

77HIR/KEB K. Hiroaka and P. Kebarle, "Condensation Reactions Involving Carbonium Ions and Lewis Bases in the Gas Phase. Hydration of the tert-Butyl Cation", J. Am. Chem. Soc. 99, 360 (1977).

Heat of formation of $t-C_4H_90H_2^+$ determined from equilibrium constant for the process: $t-C_4H_9^+ + H_2O \rightleftharpoons C_4H_90H_2^+$.

75HOD/BEA R. V. Hodges and J. L. Beauchamp, "Basicity and Ion-Molecule Reactions of Trimethylarsine in the Gas Phase Determined by Ion Cyclotron Resonance Spectroscopy", Inorg. Chem. 14, 2887 (1975).

ICR. Data related to TAFT scale.

80HOD/HOU R. V. Hodges, F. A. Houle, J. L. Beauchamp, R. A. Montag, and J. G. Verkade, "Effects of Molecular Structure on Basicity. Gas Phase Proton Affinities of Cyclic Phosphites", J. Am. Chem. Soc. 102, 932 (1980).

C₃H₃O₃P vs. c-C₃H₃CN, n-C₃H₇CN C₄H₇O₃P vs. c-C₅H₁₀O, CH₃COOCH₃ C₄H₇O₃P vs. CH₃COCH₂COCH₃, (CH₃)₆C₆ C₅H₉O₃P vs. HCON(CH₃)₂ C₆H₉O₃P vs. 2-Cl-pyridine, (t-C₄H₉)₂S C₃H₇O₃P vs. 2-Cl-pyridine, (t-C₄H₉)₂S C₄H₉O₃P vs. pyridine

trans-2-methoxy-cis,cis-4,6-dimethyl-1,3,2-dioxaphosphorinane vs. $3-CH_3$ -pyridine, $(C_2H_5)_2NH$, $2-CH_3$ -pyridine cis,cis-2-methoxy-4,6-dimethyl-1,3,2-dioxaphosphorinane vs.

4-CH₃pyridine, c-C₃H₁₀NH

80HOD/MCD R. V. Hodges, T. J. McDonnell, and J. L. Beauchamp, "Properties and Reactions of Trimethyl Phosphite, Trimethyl Phosphate, Triethyl Phosphate, and Trimethyl Phosphorothionate by Ion Cyclotron Resonance Spectroscopy", J. Am. Chem. Soc. 102, 1327 (1980).

P(OCH₃)₃: Equilibrium with C_3H_5N , $c-C_6H_{11}NH_2$ OP(OCH₃)₃: Equilibrium with $C_6H_5NH_2$, $(C_6H_5)_2C=CH_2$ OP(OC₂H₅)₃: Close to 3-(CH₃CO)C₅H₄N and pyridazine (C₄H₄N₂) SP(OCH₃)₃: Equilibrium with 4-CH₃OC₆H₄CHO

73HOP/BON J. M. Hopkins and L. I. Bone, "Relative Proton Affinities of Hydrogen Sulfide and Water", J. Chem. Phys. 58, 1473 (1973).

High pressure mass spectrometer.

78HOU/BEA F. A. Houle and J. L. Beauchamp, "Detection and Investigation of Allyl and Benzyl Radicals by Photoelectron Spectroscopy", J. Am. Chem. Soc. 100, 3290 (1978).

Determination of ionization potentials of allyl and benzyl radicals.

79HOU/BEA F. A. Houle and J. L. Beauchamp, "Photoelectron Spectroscopy of Methyl, Ethyl, Isopropyl, and tert-Butyl Radicals. Implications for the Thermochemistry and Structures of the Radicals and Their Corresponding Carbonium Ions," J. Am. Chem. Soc., 101, 4067 (1979).

Determination of ionization potentials of ethyl, isopropyl, and tert-butyl radicals.

83HOU/RUF R. Houriet, H. Rufenacht, P.-A. Carrupt, P. Vogel, and M. Tichu, "Site of Protonation and Conformational Effects on Gas Phase Basicity in Beta-Amino Alcohols. The Nature of Internal H-Bonding in Beta-Hydroxy Ammonium Ions", J. Am. Chem. Soc. 105, 3417 (1983).

ICR. Bicyclo[2.2.2]octane, 2-OH, 3-NH₂ (cis): gas basicity 0.2 kcal/mol above 4-methylpyridine. cis-3-Amino-2-twistanol: gas basicity 0.3 kcal/mol above 4-Methyl-pyridine. Decalin, 3-OH, 4-NH₂: gas basicity 0.7 kcal/mol below 3-Methylpyridine. trans-3-Amino-2-twistanol: gas basicity 1.3 kcal/mol below 3-Methyl-pyridine. Bicyclo[2.2.2]octane, 2-OH, 3-NH₂ (trans): gas basicity 0.1 kcal/mol below cyclohexylamine. trans-3-Amino-2-twistanol: gas basicity 0.9 kcal/mol below cyclohexylamine and pyridine.

4-Aminodecahydro-3-naphthalenol: gas basicity 0.9 kcal/mol below cyclohexylamine; 0.5 kcal/mol below pyridine; 0.2 kcal/mol below see-butylamine.

81HOU/SCH R. Houriet, H. Schwarz, W. Zummack, J. G. Andrade, and P. v. R. Schleyer, "Alpha vs. Beta Protonation of Pyrrole, Furan, Thiophene, and Cyclopentadiene. Gas Phase Proton and Hydrogen Affinities. The Bishomocyclopropenyl Cation," Nouv. J. Chim. 5, 505 (1981).

ICR. Bracketing. All gas basicities lay between dimethyl ether and n-propanol.

80HOU/VOG R. Houriet, J. Vogt, and E. Haselbach, "Gas Phase Protonation of Enamines," Chimia 34, 277 (1980).

ICR. Details not given.

79HUB/HER K. P. Huber and G. Herzberg, "Molecular Spectra and Molecular Structure Constants of Diatomic Molecules," Van Nostrand Reinhold Co., New York (1979).

82IKU/KEB S. Ikuta, P. Kebarle, G. M. Bancroft, T. Chan, and R. J. Puddephatt, "Basicities of Methyl-, Methylphenyl-, and Phenylphosphines in the Gas Phase", J. Am. Chem. Soc. 104, 5899 (1982).

High pressure mass spectrometer. Equilibria at 320 and 348 K: Entropy change assumed equal to zero.

81JON/BIR J. D. C. Jones, K. Birkinshaw, and N. D. Twiddy, "Rate Coefficients and Product Ion Distributions for the Reactions of OH⁺ and H₂O⁺ with N₂, O₂, N₂O, Xe, CO, CO₂, H₂S, and H₂ at 300 K", Chem. Phys. Lett. 77, 484 (1981).

SIFT. PA(N₂)~PA(O)

72KAS/FRA S. F. Kaspar and J. L. Franklin, "Ion-Molecule Reactions in the System CO₂-CH₄", J. Chem. Phys. 56, 1156 (1972).

High pressure mass spectrometer.

76KEB/YAM P. Kebarle, R. Yamdagni, K. Hiroaka, and T. B. McMahon, "Ion Molecule Reactions at High Pressure: Recent Proton Affinities, Gas Phase Acidities and Hydrocarbon Clustering Results", Int. J. Mass Spectrom. Ion Phys. 19, 71 (1976).

High pressure mass spectrometer. Only cited when data for a particular molecule has not been given in any subsequent papers from this laboratory. Values scaled to those from LAU papers.

81KIM/BON J. K. Kim, J. Bonicamp, and M. C. Caserio, "Thiosulfonium Ions by Gas-Phase Methylation and Thiomethylation of Sulfur Nucleophiles. I. Methoxymethyl Cations", J. Org. Chem. 46, 4230 (1981). ICR. Bracketing:

(CH₃)₂O < CH₃SSCH₃ < (CH₃)₂S

LAU/KEB Y. K. Lau, Ph. D. Thesis, University of Alberta (1979).

High pressure mass spectrometer. Some entropy change determinations.

76LAU/KEB Y. K. Lau and P. Kebarle, "Substituent Effects on the Intrinsic Basicity of Benzene: Proton Affinities of Substituted Benzenes", J. Am. Chem. Soc. 98, 7452 (1976).

High pressure mass spectrometer. Some entropy change determinations

81LAU/NIS Y. K. Lau, K. Nishizawa, A. Tse, R. S. Brown, and P. Kebarle, "Protonation and Site of Protonation of Anilines. Hydration and Site of Protonation after Hydration", J. Am. Chem. Soc. 103, 6291 (1981).

Data related to aniline. High pressure mass spectrometer.

78LAU/SAL Y. K. Lau, P. P. S. Saluja, P. Kebarle, and R. W. Alder, "Gas Phase Basicities of N-Methyl Substituted 1,8-Diaminonaphthalenes and Related Compounds", J. Am. Chem. Soc. 100, 7328 (1978).

High pressure mass spectrometer.

79LIA S. Lias in "Kinetics of Ion-Molecule Reactions" (P. Ausloos, Editor), "Thermochemistry of Polyatomic Cations", p. 223 (1979).

ICR. Proton transfer equilibria of ketene with acetone and methyl acetate measured as a function of temperature.

LIA/JAC S. G. Lias, J.-A. A. Jackson, H. Argentar and J. F. Liebman, "Substituted Dialkyl Anilines: Relative Ionization Energies and Proton Affinities through Determination of Ion-Molecule Reaction Equilibrium Constants", J. Org. Chem., in press. ICR.

84LIA/LIE S. G. Lias, J. F. Liebman, J. L. Holmes, J. E. Bartmess, R. D. Levin, and M. Motevalli-Aliabadi, Phys. Chem. Ref. Data, to be published.

An evaluated compilation of heats of formation of ions now in preparation.

80LIA/SHO S. G. Lias, D. M. Shold, and P. Ausloos, "Proton-Transfer Reactions Involving Alkyl Ions and Alkenes. Rate Constants, Isomerization Processes, and the Derivation of Thermochemical Data", J. Am. Chem. Soc. 102, 2540 (1980). ICR. Data relative to $i-C_4H_8$. Trans-2- C_4H_8 and $c-C_6H_{10}$ by bracketing. $2-C_4H_8 \sim CH_3NO_2$; $c-C_6H_{10} \sim HCOOCH_3$.

75LIN/ALB W. Lindinger, D. L. Albritton, C. J. Howard, F. C. Fehsenfeld, and E. E. Ferguson, "Flow-drift Tube Measurements of H₂O₂⁺ Reactions with H₂O, NH₃, NO and CO and Charge Transfer of O₂⁺ with H₂O₂", J. Chem. Phys. 63, 5220 (1975).

Flowing afterglow.

79LOC/HUN M. J. Locke, R. L. Hunter, and R. T. McIver, Jr., "Experimental Determination of the Acidity and Basicity of Glycine in the Gas Phase", J. Am. Chem. Soc. 101, 272 (1979). ICR. [382 K].

83LOC/HUN See 83MCI

75LOS/TRA F. P. Lossing and J. C. Traeger, "Stabilization in Cyclopentadienyl, Cyclopentenyl, and Cyclopentyl Cations", J. Am. Chem. Soc. 97, 1579 (1975).

Appearance potential of C₅H₇⁺ from cyclopentene.

78MAC/BOH G. I. Mackay and D. K. Bohme, "Proton Transfer Reactions in Nitromethane at 297 K", Int. J. Mass Spectrom. Ion Phys. 26, 327 (1978).

Flowing afterglow.

CH₃NO₂ related to CH₃OH and CH₃CH=CH₂; absolute scale related to LIA/SHO.

81MAC/SCH G. I. Mackay, H. I. Schiff, and D. K. Bohme, "A Room-Temperature Study of the Kinetics and Energetics for the Protonation of Ethane", Can. J. Chem. 59, 1771 (1981). Flowing afterglow.

79MAU M. Meot-Ner (Mautner), "Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. 2. Intrinsic Basicities and Hydrogen-Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases", J. Am. Chem. Soc. 101, 2396 (1979).

High pressure mass spectrometer [500-600 K].

80MAU M. Meot-Ner (Mautner), "Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. 3. Polycyclic Aromatics: Ionization Energies, Proton and Hydrogen Affinities. Extrapolations to Graphite", J. Phys. Chem. 84, 2716 (1980). High pressure mass spectrometer. [550 K]

82MAU M. Meot-Ner (Mautner), "Carbon-Hydrogen Bond Dissociation Energies in Alkylbenzenes. Proton Affinities of the Radicals and the Absolute Proton Affinity Scale", J. Am. Chem. Soc. 104, 5 (1982).

ICR. Bracketing: Proton transfer rate constants measured and thermoneutral point identified from fall-off of rate constant as reaction becomes progressively less exothermic.

83MAU M. Meot-Ner (Mautner), "The Ionic Hydrogen Bond. 2. Intramolecular and Partial Bonds. Protonation of Polyethers, Crown Ethers, and Diketones," J. Am. Chem. Soc. 105, 4906 (1983); M Meot-Ner (Mautner), S. F. Nelsen, M. F. Willi, and T. B. Frigo, J. Am. Chem. Soc., in press; and other papers, to be published. (All data made available to this compilation before publication).

High pressure mass spectrometer. Enthalpy and entropy changes determined for most reactions; assumed entropy changes indicated here by parentheses. Gas basicity values cited for 300 K in Table 1.

	ΔH	ΔS
	kcal/mol	cal/K mol
THF:Oxepane	-2.7	(0)
C ₂ H ₅ SCH ₃ :Oxepane	+0.5	(1.4)
THF:1,3-Dioxane	+0.2	(0)
$(C_2H_5)_2O:1,3$ -Dioxane	+1.4	(0)
n-(C ₃ H ₇) ₂ O:CH ₃ OCH ₂ CH ₂ OCH ₃	-2.2	-5.0
(C ₂ H ₅)SCH ₃ *CH ₃ OCH ₂ CH ₂ OCH ₃	-1.8	-3.6
n-Bu ₂ S:CH ₃ O(CH ₂) ₃ OCH ₃	-5.2	-5.4
2-FPyr:CH ₂ O(CH ₂) ₂ OCH ₃	-3.6	-5.5
3-FPyr:CH ₃ O(CH ₂) ₃ OCH ₃	+0.8	-7.0
2-FPyr:CH ₃ (OCH ₂ CH ₂) ₂ OCH ₃	-8.5	-13.2
3-FPyr:CH ₃ (OCH ₂ CH ₂) ₂ OCH ₃	-5.7	-15.7
1.2-Diazine: "	-1.4	-11.7
1,2-Diaz:CH ₃ (OCH ₂ CH ₂) ₃ OCH ₃	-9.1	-17.7

	∆H kcal/mol	AS cal/K mol
1,2-Diaz:12-Crown-4	-3.3	-3.1
Pyr:12-Crown-4	+1.2	-2.6
1,2-Diaz:15-Crown-5	-3.6	(-3)
Pyr:15-Crown-5	+0.1	(-3)
1,2-Diaz:18-Crown-6	-2.7	(-3)
Pyr:18-Crown-6	+0.9	(-3)
HCOOn-C ₄ H ₉ :CH ₃ COCOCH ₃	-1.7	(1.4)
(CH ₃) ₂ CO:CH ₃ COCOCH ₃	+1.9	2.6
CH ₃ COC ₂ H ₅ : "	+3.7	(1.4)
(n-C ₃ H ₇) ₂ S:CH ₃ COCH ₂ COCH ₃	-1.2	-3.0
Pyrrole:CH ₃ COCH ₂ COCH ₃	+0.1	-4.1
Pyrrole:CH ₃ COCH ₂ CH ₂ COCH ₃	-3.9	-8.5
2-FPyr:CH ₃ COCH ₂ CH ₂ COCH ₃	-2.6	-5.6
(C ₂ H ₅) ₂ CO:Cyclohexanone	-2.5	(0)
C ₂ H ₅ SCH ₃ :Cyclohexanone	-1.0	(0)
C ₂ H ₅ SCH ₃ :1,2-Cyclohexanedione	-1.7	(1.4)
(n-C ₃ H ₇) ₂ S:1,2-Cyclohexanedione	+3.8	(0)
Pyrrole:1,3-Cyclohexanedione	-2.7	(1.4)
2-FPyr:1,3-Cyclohexanedione	-1.0	(1.4)
2-FPyr:CH ₃ CONHCH ₂ COOCH ₃	-7.0	-13.4
2-FPyr:CH ₃ CONHCNCH ₃ COOCH ₃	-12.3	-14.7
3-FPyr:CH ₃ CONHCNCH ₃ COOCH ₃	-9.6	-15.7
$H NNH \cdot AG = -4.7 \text{ kcal/mol} \text{ to}$	nurrole: _0 1	kcal/mol

 H_2NNH_2 : $\Delta G = -4.7$ kcal/mol to pyrrole; -0.1 kcal/mol to cyclopropylmethylketone, +2.1 kcal/mol to n-propylether at 600 K.

Isooxazole: $\Delta G = +2.7 \text{ kcal/mol to } (C_2H_5)_2O$ at 600 K.

Oxazole: $\Delta G = 0.3$ kcal/mol to pyrrole at 600 K.

Furan: $\Delta G = +3.2$ kcal/mol to toluene; -0.6 kcal/mol to ethylformate at 600 K.

2,5-Dimethylfuran: $\Delta G = 2.4$ kcal/mol to pyrrole at 600 K.

2-Methylfuran: $\Delta G = -1.8$ kcal/mol to pyrrole at 600 K.

Thiophene: $\Delta G=1.5$ kcal/mol to 1,4-dioxane; -2.5 kcal/mol to CH₃COC₂H₅ at 600 K.

2-Methylthiophene: $\Delta G = 0.7$ kcal/mol to c-C₃H₅COCH₃ at 600 K.

N-Methylimidazole: $\Delta G=4.7$ kcal/mol to 3-methylpyridine; -5.5 kcal/mol to $(C_2H_5)_3N$ at 600 K.

4-Methylimidazole: $\Delta G = 0.4$ kcal/mol to 3-ethylpyridine at 600 K.

Imidazole: $\Delta G = 2.6$ kcal/mol to iso-C₃H₇NH₂ at 600 K.

2,5-Dimethylpyrrole: $\Delta G = 1.0 \text{ kcal/mol to iso-C}_3H_7NH_2 \text{ at } 600 \text{ K}$

Thiazole: $\Delta G = -0.8$ kcal/mol to 3-fluoropyridine at 600 K.

Pyrazole: $\Delta G = 0.8$ kcal/mol to 2-fluoropyridine at 600 K.

 CH_2 = $CHOCH_3$: $\Delta G = -0.7$ kcal/mol to pyrrole at 600 K.

 $C_2H_5OCH=CH_2$: $\Delta G=1.0$ kcal/mol to pyrrole; 2.6 kcal/mol to 2-fluoropyridine at 600 K.

77MAU/FIE M. Meot-Ner (Mautner) and F. H. Field, "Proton Affinities and Cluster Ion Stabilities in CO₂ and CS₂. Applications in Martian Ionospheric Chemistry," J. Chem. Phys. 66, 4527 (1977).

High pressure mass spectrometer.

80MAU/HAM M. Meot-Ner (Mautner), P. Hamlet, E. P. Hunter, and F. H. Field, "Internal and External Solvation of Polyfunctional Ions", J. Am. Chem. Soc. 102, 6393 (1980). High pressure mass spectrometer.

79MAU/HUN M. Meot-Ner (Mautner), E. P. Hunter, and F. H. Field, "Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. 1. Intrinsic Basicities of a-Amino Acids", J. Am. Chem. Soc. 101, 686 (1979).

High pressure mass spectrometer.

80MAU/HUN M. Meot-Ner (Mautner), E. P. Hunter, P. Hamlet, and F. H. Field, "Thermochemistry of Intramolecular Solvation in Protonated and Radical Ions: Diamines, Triamines, Amino Alcohols, Diphenyl Alkanes, and Normal Alkanes", Proceedings of the 28th Annual Conference on Mass Spectrometry and Allied Topics, May 25-30 (1980), p.233.

High pressure mass spectrometer.

83MAU/SIE M. Mautner and L. W. Sieck, "Structure Effects on Ion

Thermochemistry. l. Steric Hindrance of the Hydrogen Bond: Solvation and Clustering of Protonated Amines and Pyridines", J. Am. Chem. Soc. 105, 2956 (1983).

High pressure mass spectrometer. Includes entropy change measurements.

76MAU/SOL M. Mautner (Meot-Ner), J. J. Solomon, and F. H. Field, "Stability of Some C, Tertiary Carbonium Ions", J. Am. Chem. Soc. 98, 1025 (1976).

High pressure mass spectrometer. Heats of formation of alkyl ions from hydride transfer equilibrium constant measurements; values calculated relative to a value of 165.8 kcal/mol for $t-C_4H_9^+$.

74MCA T. McAllister, "Ion-Molecule Reactions and Proton Affinities of Methyl Thio- and Isothiocyanate", Int. J. Mass Spectrom. Ion Phys. 15, 303 (1974).

ICR. Bracketing:

$i-C_4H_8$ < C_2H_3NS < CH_3COCH_3

77MCA T. McAllister, "Ion Cyclotron Resonance Mass Spectroscopy of Dimethyl Sulfoxide", Int. J. Mass Spectrom. Ion Phys. 25, 353 (1977).

ICR. Bracketing: CH₃OH<(CH₃)₂SO<C₂H₅OH. Disagrees with equilibrium results.

78MCA T. McAllister, "The Formation of Interstellar HCS", Astrophys. J. 222, 857 (1978).
ICR. Bracketing.

81MCA/NIC T. McAllister, J. C. Nicholson, and J. D. Scott, "Ionization of Nitromethane in the Flame Ionization Detector", Can. J. Chem. 59, 1819 (1981).

76MCA/PIT T. McAllister and P. Pitman, "Ion-Molecule Reactions and Proton Affinities of Methyl Nitrite and Nitromethane", Int. J. Mass Spectrom. Ion Phys. 19, 241 (1976).

ICR. Bracketing:

C₂H₃OH<CH₃ONO<CH₃COCH₃ CH₃NO₂~CH₃OH

76MCC K. E. McCulloh, "Energetics and Mechanisms of Fragment Ion Formation in the Photoionization of Normal and Deuterated Water and Ammonia", Int. J. Mass Spectrom. Ion Phys. 21, 333 (1976).

Appearance potential of OH+ from H2O.

77MCC K. E. McCulloh, "The Proton Affinity of O₂ from Photoionization Studies of H₂O₂," Proc. 25th Ann. Conf. Mass Spectrom. Allied Topics, Washington, D. C., 1977. Also cited as data "To be published" in K. N. Hartman, S. Lias, P. Ausloos, H. M. Rosenstock, S. S. Schroyer, C. Schmidt, D. Martinsen, and G. W. A. Milne, "A Compendium of Gas Phase Basicity and Proton Affinity Measurements," NBSIR 79-1777 (1979).

Measurement of the appearance potential of O₂H⁺ from H₂O₂.

83MCI R. T. McIver, Jr., Table from work in press provided for this compilation. Complete reference: M. J. Locke and R. T. McIver, Jr., "Effect of Solvation on the Acid/Base Properties of Glycine," J. Am. Chem. Soc. 105, 4226 (1983). ICR, 382 K.

81MCL/CAM S. A. McLuckey, D. Cameron, and R. G. Cooks, "Proton Affinities from Dissociations of Proton Bound Dimers", J. Am. Chem. Soc. 103, 1313 (1981).

Proton affinity(Quinoline) 0.4 kcal/mol less than that for 3,4-(CH₁)₂C₄H₁N.

 $PA(C_6H_5NHC_2H_5)$ 0.7 kcal/mol less than that of $n-C_6H_{13}NH_2$ and 1.1 kcal/mol less than that of $sec-C_4H_6NH_2$.

76MEI/MIT G. G. Meisels, R. K. Mitchum, and J. P. Freeman, "Arrival Time Distributions in High Presesure Mass Spectrometry. 5. Effect of E/P on Measured Apparent Heats and Entropies of Reaction", J. Phys. Chem. 80, 2845 (1976).

High pressure mass spectrometer. Entropy change measurement for CO_2 : $CH_4 = 7.1$ J/mol s (1.7 cal/K mol).

77MUN/SMI R. Munson, D. Smith, and C. Polley, "The Mass Spectrum, Proton Affinity and Ion-Molecule Reactions of SO₃", Int. J. Mass Spectrom. Ion Phys. 25, 323 (1977).

High pressure mass spectrometer. Bracketing: HBr < SO₃ < CO 77NG/TRE C. Y. Ng, D. J. Trevor, P. W. Tiedemann, S. T. Ceyer, P. L. Kronebusch, B. H. Mahan, and Y. T. Lee, "Photoionization

of Dimeric Polyatomic Molecules: Proton Affinities of H₂O and HF", J. Chem. Phys. 67, 4235 (1977).

Determination of proton affinities of H₂O and HF through appearance potential measurements on neutral dimers.

82PAU/HEH C.-F. Pau and W. J. Hehre, "Heat of Formation of Hydrogen Isocyanide by Ion Cyclotron Double Resonance Spectroscopy", J. Phys. Chem. 86, 321 (1982).

ICR. Bracketing of deuteron transfer from protonated DCN: $C_2H_3CHO < HNC < C_2H_3SH$.

82PAU/HEH(2) C.-F. Pau and W. J. Hehre, "Relative Thermochemical Stabilities of Hydroxymethylene and Formaldehyde by Ion Cyclotron Double Resonance Spectroscopy", J. Phys. Chem. 86, 1252 (1982).

ICR. Bracketing of deuteron transfer from protonated D_2CO : $C_2H_3(i-C_3H_7)NH < DCOH < N-Methylpiperidine$

75PAY/SCH J. D. Payzant, H. I. Schiff, and D. K. Bohme, "Determination of the Proton Affinity from the Kinetics of Proton Transfer Reactions. V. The Equilibrium H₃⁺ + Kr

KrH⁺ + H₂ and the Relative Proton Affinity of Kr and H₂", J. Chem. Phys. 63, 149 (1975).

Flowing afterglow.

82PIE/HEH W. J. Pietro and W. J. Hehre, "Thermochemistry of Group 4A Isobutene Analogues by Pulsed Ion Cyclotron Double Resonance Spectroscopy", J. Am. Chem. Soc. 104, 4329 (1982). ICR. Bracketing: Identities of reference bases not specified;

temperature correction of TAFT scale made by authors.
82PIE/HEH(2) W. J. Pietro and W. J. Hehre, "Tautomerization of Dimethyl Phosphonate," J. Am. Chem. Soc., 104, 3594 (1982).
ICR. Bracketing. D⁺ transfer from (CH₃O)₂PDOH⁺ occurs

with 3-CH₃C₆H₄NH₂ but not with (CH₃O)₃PO. H⁺ transfer approximately thermoneutral with CF₂HCON(CH₃)₂.

*Data cited in paper as "C. Lebrilla, unpublished work."

**Data cited in paper as "M. Berthelot, unpublished work."

***Data cited in paper as "T. Gramstad, unpublished work."

73PIE/POR R. C. Pierce and R. F. Porter, "Low Temperature Chemical Ionization Mass Spectrometry of Boron Hydrides. The Proton Affinities of Diborane and Tetraborane", J. Am. Chem. Soc. 95, 3849 (1973).

High pressure mass spectrometer.

79PIE/POL W. J. Pietro, S. K. Pollack, and W. J. Hehre, "Heat of Formation of 1,1-Dimethylsilaethylene by Ion Cyclotron Resonance Spectroscopy", J. Am. Chem. Soc. 101, 7126 (1979). ICR. Bracketing:

Piperidine < $(CH_3)_2Si = CH_2 < i-C_3H_7NHC_2H_5$

75PIT/BUR C. G. Pitt, M. M. Bursey, and D. A. Chatfield, "The Relative Gas Phase Proton Affinities and Polarisabilities of Alkyl and Silyl Ethers", J. C. S. Perkin II, 434 (1975).

High pressure mass spectrometer. Ordering, with brackets at ends of scale:

 $(i-C_3H_7)_2O\{GB=198.0\} > t-C_4H_9OCH_3 > ((CH_3)_3Si)_2O > ((CH_3)_2HSi)_2O > (CH_3)_3SiOCH_3 > (C_2H_5)_2O\{GB=192 \text{ kcal/mol}\}.$

Also given, but not included here for lack of brackets: $(t-C_4H_9)_2O > t-C_4H_9O(i-C_3H_7)$ and $((CH_3)_2HSi)_2O > ((CH_3)_3SiCH_2)_2O$ and $(CH_3)_3SiOCH_3 > (CH_3)_3SiOH$

77PO/POR P. L. Po and R. F. Porter, "High Temperature Ion-Molecule Chemistry. A Kinetic Study of Gas Phase Reactions of Magnesium Atoms with D₃⁺, Methanium, Ammonium, and tert-C₄H₉⁺ Ions", J. Am. Chem. Soc. 99, 4922 (1977).

High pressure mass spectrometer. Proton affinity (Mg)>193 koal/mol. (Not included in Table)

78PO/POR P. L. Po and R. F. Porter, "A Thermodynamic Study of the Reactions of Mg⁺(g) and MgH⁺(g) with Magnesium", J. Phys. Chem. 81, 2233 (1977).

High pressure mass spectrometer. Heat of formation of MgH^+ from Keq for: $MgH^+ + Mg(s) = Mg_2H^+$.

78PO/RAD P. L. Po, T. P. Radus, and R. F. Porter, "An Energy Dependent Kinetic Study of the Reactions of Zn(g) Atoms with $H_3^+(D_3^+)$ and CH_4D^+ ", J. Phys. Chem. 82, 520 (1978).

High pressure mass spectrometer. Bracketing.

77POL/DEV S. K. Pollack, J. L. Devlin III, K. D. Summerhays, R. W. Taft, and W. J. Hehre, "The Site of Protonation in Aniline", J. Am. Chem. Soc. 99, 4583 (1977).

ICR. Data related to TAFT scale, corrected to 320 K.

80POL/HEH S. K. Pollack and W. J. Hehre, "Determination of the Heat of Formation of Ortho-Benzyne by Ion Cyclotron Resonance Spectroscopy", Tetrahedron Letters 21, 2483 (1980). ICR. Bracketing:

 $(t-C_4H_9)_2S < C_6H_4 < (CH_3)_2NCOOC_2H_5$

78POL/MUN C. W. Polley and B. Munson, "The Proton Affinities of the Halogen Acids", Int. J. Mass Spectrom. Ion Phys. 26, 49 (1978).

High pressure mass spectrometry.

Bracketing: Br < HCl < N₂O HCl < HBr < CO I < HI < HBr

81POL/RAI S. K. Pollack, B. C. Raine, and W. J. Hehre, "Determination of the Heats of Formation of the Isomeric Xylylenes by Ion Cyclotron Double Resonance Spectroscopy", J. Am. Chem. Soc. 103, 6308 (1981).

ICR. Bracketing:

 $\begin{array}{l} \text{3--Clpyridine} < \text{o--}C_8H_8 < \text{CF}_3\text{CH}_2\text{N}(\text{CH}_3)_2 \\ \text{2--Clpyridine} < \text{p--}C_8H_8 < \text{C}_2\text{H}_5\text{NH}_2 \end{array}$

77POL/WOL S. K. Pollack, J. F. Wolf, B. A. Levi, R. W. Taft, and W. J. Hehre, "Kinetic Detection of Common Intermediates in Gas Phase Ion-Molecule Reactions", J. Am. Chem. Soc. 99, 1350 (1977).

ICR. Data related to TAFT scale; temperature assumed to be 320 K rather than 300 K.

83PRE/TZE H. F. Prest, W.-B. Tzeng, J. M. Brom, Jr., and C. Y. Ng, "Photoionization Study of (H₂S)₂ and (H₂S)₃", J. Am. Chem. Soc. 105, 7531 (1983).

Heat of formation of H₃S⁺ from appearance energy from (H₂S)₂; approximately corrected to 298 K by present authors.

83RAK/BOH A. B. Rakshit and D. K. Bohme, "The Proton Affinity of C₃ and Heat of Formation of C₃H⁺," Int. J. Mass Spectrom. Ion Phys., 49, 275 (1983).

Flowing afterglow. Bracketing:

 $CH_3OH < C_3 < CH_3CN$.

84RAK/BOH A. B. Raksit and D. K. Bohme, "Selected-Ion Flow Tube Methods Applied to the Bracketing of Proton Affinities. PA(C₂N₂) and PA(HC₃N)" Int. J. Mass Spectrom. Ion Proc. 57, 211 (1984).

Flowing afterglow. Bracketing:

$$SO_2 < C_2N_2 < C_2H_4$$

 $CH_3NO_2 < HC_3N < CH_3CN$

80REE/FRE W. D. Reents, Jr. and B. S. Freiser, "Gas Phase Nitrosation of Benzene. Implications for Solution Electrophilic Aromatic Substitution Reactions" J. Am. Chem. Soc. 102, 271 (1980).

ICR. Bracketing. $NH_3 < C_6H_5NO < (i-C_3H_7)_2O$

68REF/CHU K. M. A. Refaey and W. A. Chupka, "Photoionization of the Lower Aliphatic Alcohols with Mass Analysis", J. Chem. Phys. 48, 5205 (1968).

Determination of appearance potentials of fragment ions from alcohols.

75RID D. P. Ridge, "Gas Phase Proton Affinities of Several Fluoroethylenes", J. Am. Chem. Soc. 97, 5670 (1975). ICR. Bracketing:

> $H_2O < C_2H_3F \sim H_2S$ $C_2H_3I < CH_2CF_2 < CH_3OH$ $C_2H_3F < CHFCHF < H_2O$ $H_2O < C_3HF_3 < H_2S$

71ROC/SUT A. E. Roche, M. M. Sutton, D. K. Bohme, and H. I. Schiff, "Determination of Proton Affinity from the Kinetics of Proton Transfer Reactions. I. Relative Proton Affinities", J. Chem. Phys. 55, 5480 (1971).

Flowing afterglow. Bracketing:

 $N_2 < CF_4$, $NO < CH_4$

Ar < H2,O2 (Not included in Table)

82ROS/BUF H. M. Rosenstock, R. Buff, M. A. A. Ferreira, S. G.

Lias, A. C. Parr, R. L. Stockbauer, and J. L. Holmes, "Fragmentation Mechanism and Energetics of Some Alkyl Halide Ions", J. Am. Chem. Soc. 104, 2337 (1982).

Appearance potentials of C₂H₅⁺ and C₃H₇⁺ from alkyl halides.

77ROS/DRA H. M. Rosenstock, K. Draxl, B. W. Steiner, and J. T. Herron, "Energetics of Gaseous Ions," J. Phys. Chem. Ref. Data 6, Suppl. 1 (1977).

82ROY/MCM M. Roy and T. B. McMahon, "The Proton Affinity of Thioformaldehyde. Implications for the Heat of Formation of Thioformaldehyde and Thiomethyl Carbonium Ion from Ion Cyclotron Resonance Investigations of the Proton Transfer Reactions of [CH₂SH]⁺", Org. Mass Spectrom. 17, 392 (1982). ICR. Bracketing:

CF₃CO₂C₂H₅<CH₂S<CH₃CHO

79SAL/KEB P. P. S. Saluja and P. Kebarle, "Heat of Formation of the 2-Norbornyl Cation in the Gas Phase," J. Am. Chem. Soc. 101, 1084 (1979).

High pressure mass spectrometer. Proton transfer equilibria observed in norbornene: anisole ($\Delta G_{560}=1.5$ kcal/mol) and anisole: cyclohexanone ($\Delta G_{560}=-1.9$ kcal/mol) systems.

75SCH/BOH H. I. Schiff and D. K. Bohme, "Flowing Afterglow Studies at York University", Int. J. Mass Spectrom. Ion Phys. 16, 167 (1975).

Review. Flowing afterglow.

84SHA/BLA R. B. Sharma, A. T. Blades, and P. Kebarle, "Protonation of Polyethers, Glymes and Crown Ethers in the Gas Phase," J. Am. Chem. Soc. 106, 510 (1984).

High pressure mass spectrometer. Entropy changes determined.

81SHA/KEB D. K. Sen Sharma and P. Kebarle, "Stability and Reactivity of the Benzyl and Tropylium Cations in the Gas Phase," Can. J. Chem. 59, 1592 (1981).

Determination of equilibrium constant of reaction: $C_6H_5CH_2^+ + (CH_3)_3CCl \rightleftharpoons (CH_3)_3C^+ + C_6H_5CH_2Cl$.

78SHE/GOB K. J. Shea, R. Gobeille, J. Bramblet, and E. Thompson, "Gas Phase Basicities of Silanamines", J. Am. Chem. Soc. 100, 1611 (1978).

Data related to TAFT scale, but specific bases not identified. Data reported as "proton affinities" relative to ammonia: no information given about assumptions concerning entropy change or temperatures. Evaluated gas basicity data based on assumption that original authors simply added measured free energy change values to NH₃ proton affinity. Scale expanded to match the expanded TAFT scale.

81SMI/ADA D. Smith, N. G. Adams, and W. Lindinger, "Reactions of the $\rm H_nS^+$ Ions ($n\!=\!0$ to 3) with Several Molecular Gases at Thermal Energies", J. Chem. Phys. 75, 3365 (1981).

SIFT. Bracketing: CO<COS<S

78SMI/MUN D. E. Smith and B. Munson, "Proton Affinities of Some Sulfur-Oxygen Compounds", J. Am. Chem. Soc. 100, 497 (1978).

Bracketing. $CH_3F < SO_2F_2 < SO_2 < HSO_3F < C_2H_4$ $H_2O < H_2SO_4 \sim CF_3SO_3H < H_2S$

75SOL/FIE J. J. Solomon and F. H. Field, "Reversible Reactions of Gaseous Ions. IX. The Stability of C₄-C₇ Tertiary Alkyl Carbonium Ions", J. Am. Chem. Soc. 97, 2625 (1975).

Heats of formation of alkyl ions from hydride transfer equilibria; related to the heat of formation of t $C_4H_9^+$ — 165.8 kcal/mol.

76SOL/FIE J. J. Solomon and F. H. Field, "Reversible Reactions of Gaseous Ions. X. The Intrinsic Stability of the Norbornyl Cation", J. Am. Chem. Soc. 98, 1567 (1976).

Hydride transfer equilibrium constant determined for $t-C_4H_9^+$ + Norbornane \rightarrow Norbornyl⁺ + iso- C_4H_{10} . Heat of formation of $t-C_4H_9^+$ taken as 165.8 kcal/mol.

75SOL/HAR B. H. Solka and A. G. Harrison, "Bimolecular Reactions of Trapped Ions. Part XI. Rates and Equilibria in Proton Transfer Reactions of CH₃SH₂+", Int. J. Mass Spectrom. Ion Phys. 17, 379 (1975).

Equilibrium:

 $CH_3CHOH^+ + CH_3SH$, $\Delta G=-0.5$ kcal/mol

CH₃SH₂⁺ + C₂H₅CHO, ΔG =-2 kcal/mol CH₃SH₂⁺ + (CH₃)₂O, ΔG =-4 kcal/mol

72SOL/POR J. J. Solomon and R. F. Porter, "Chemical Ionization Mass Spectrometry of Selected Boron Hydrides", J. Am. Chem. Soc. 94, 1443 (1972).

Bracketing: H₂O < B₅H₉ < H₂S

74STA/BEA R. H. Staley and J. L. Beauchamp, "Basicities and Ion-Molecule Reactions of the Methylphosphines in the Gas Phase by Ion Cyclotron Resonance Spectroscopy", J. Am. Chem. Soc. 96, 6252 (1974).

ICR. Data relative to TAFT scale; temperature assumed to be 320 K

74STA/BEA(2) R. H. Staley and J. L. Beauchamp, "Relationship of Nitrogen Lone Pair Interactions to Thermodynamic Parameters Associated with Amine Basicities", J. Am. Chem. Soc. 96, 1604 (1974).

ICR. Data relative to TAFT scale; temperature assumed to be 320 K.

75STA/BEA R. H. Staley and J. L. Beauchamp, "Equilibrium Studies of Gas Phase Ion-Molecule Reactions. Ion Cyclotron Resonance Results for the Reaction CO₂H⁺ + CH₄ = CH₅⁺ + CO₂", J. Chem. Phys. 62, 1998 (1975).

ICR. Data relative to TAFT scale; temperature assumed to be 320 K.

76STA/KLE R. H. Staley, J. E. Kleckner, and J. L. Beauchamp, "Relationship between Orbital Ionization Energies and Molecular Properties. Proton Affinities and Photoelectron Spectra of Nitriles", J. Am. Chem. Soc. 98, 2081 (1976).

ICR. Data relative to TAFT scale; temperature assumed to be 320 K

77STA/TAA R. H. Staley, M. Taagepera, W. G. Henderson, I. Koppel, J. L. Beauchamp, and R. W. Taft, "Effects of Alkyl and Fluoroalkyl Substitution on the Heterolytic and Homolytic Bond Dissociation Energies of Protonated Amines", J. Am. Chem. Soc. 99, 326 (1977).

ICR. Data related to TAFT scale; temperature assumed to be 320 K.

77STA/WIE R. H. Staley, R. D. Wieting, and J. L. Beauchamp, "Carbenium Ion Stabilities in the Gas Phase and Solution. An Ion Cyclotron Resonance Study of Bromide Transfer Reactions Involving Alkali Ions, Alkyl Carbenium Ions, Acyl Cations, and Cyclic Halonium Ions", J. Am. Chem. Soc. 99, 5964 (1977).

ICR. Data related to TAFT scale; temperature assumed to be 320 K.

79STE/BEA A. E. Stevens and J.L. Beauchamp, "Gas Phase Organometallic Chemistry. Mechanism and Energetics of Methane Formation Resulting from Protonation of (CO)₅MnCH₃", J. Am. Chem. Soc. 101, 245 (1979).

ICR. Bracketing:

 $CH_3CH = CH_2 < (CO)_5MnCH_3 \sim CH_3OH < CH_3CHO$

81STE/BEA A. E. Stevens and J. L. Beauchamp, "Metal-Hydrogen Bond Energies in Protonated Transition Complexes", J. Am. Chem. Soc. 103, 190 (1981).

ICR. Compounds related to gas phase basicity scale, but no experimental details given; (bracketing or equilibrium?). From proton affinity cited here for $(C_5H_5)_2Ni$, also given in (76COR/BEA), it would appear that results given here correspond to the contracted 300 K scale, and therefore the usual correction to 320 has been made. However, there is still an unexplained discrepancy of 1.3 kcal/mol for $(C_5H_5)_2Ni$ results. Entropy corrections unknown.

80STO/CAM J. A. Stone, J. R. M. Camicioli, and M. C. Baird, "Protonation of Dimethylmercury. Complexing Reactions of CH₃Hg⁺ in the Gas Phase", Inorg. Chem. **19**, 3128 (1980).

ICR. Bracketing:

 $C_6H_6 < (CH_3)_2Hg < C_6H_5CH_3$

82STO/SPL J. A. Stone, D. E. Splinter, and S. Y. Kong, "A Comparison of the Relative Binding Energies of H⁺ and NO⁺ to Aromatic and Haloaromatic Bases by High Pressure Mass Spectrometry", Can. J. Chem. 60, 910 (1982).

High pressure mass spectrometer. Proton transfer equilibrium

constants in mixtures of methyl formate with toluene, 3-fluorotoluene, 2-fluorotoluene, and 4-fluorotoluene.

77SUM/POL K. D. Summerhays, S. K. Pollack, R. W. Taft, and W. J. Hehre, "Gas Phase Basicities of Substituted Anilines. Inferences About the Role of Solvent in Dictating Site of Protonation", J. Am. Chem. Soc. 99, 4585 (1977).

ICR. Data related to TAFT scale; temperature assumed to be 320 K

81TAA/SUM M. Taagepera, K. D. Summerhays, W. J. Hehre, R. D. Topsom, A. Pross, L. Radom, and R. W. Taft, "Analysis of the Acidities of 3- and 4- Substituted Pyridinium and Anilinium Ions", J. Org. Chem. 46, 891 (1981).

ICR. See comments under TAFT.

TAFT

ICR. Unpublished compiled list of values of gas phase basicities measured by several workers, notably including R. W. Taft, R. McIver, W. J. Hehre, and co-workers. Here referred to as the "TAFT list". Most of the data given on the list have been published elsewhere, and are listed here with the appropriate reference. (See: 75ARN, 72ARN/JON, 76COO/KAT, 82DEF/HEH, 80DEF/MCI, 76DEV/WOL, 74HEH/MCI, 72HEN/TAA, 79LOC/HUN, 83MCI, 82PAU/HEH, 82PAU/HEH(2), 82PIE/HEH, 82PIE/HEH(2), 79PIE/POL, 77POL/DEV, 80POL/HEH, 81POL/RAI, 77POL/WOL, 77SUM/POL, 75TAF, 83TAF, 73TAF/TAA, 77WOL/ABB, 75WOL/HAR, 77WOL/STA). Values cited as "TAFT" either have not been published, or the publication has not been identified for the current compilation. All data from these various publications have been assumed to have been taken at 320 K, rather than the originally reported 300 K (R. W. Taft, private communication). As a result of the uncertainty in the actual temperature(s) at which measurements were made, and the great length of the free energy scale represented by these results, there may be some uncertainty in the length of the scale. To minimize this problem, sections of the scale have been related to local standards (i.e. H₂O, isobutene) wherever possible. Occasionally thermochemical scales from other laboratories have been related by the subsequent authors to this base scale; when this is the case, the notation given here is "Related to TAFT scale".

75TAF R. W. Taft, "Gas Phase Proton Transfer Equilibria", in "Proton Transfer Reactions" (E. F. Caldin and V. Gold, Editors), p. 31 (1975).

ICR. Data as reported corrected to 320 K. See comments under TAFT.

83TAF R. W. Taft, "Protonic Acidities and Basicities in the Gas Phase and in Solution: Substituent and Solvent Effects", Prog. Phys. Org. Chem. 14, 248 (1983).

ICR. See comments under TAFT. Temperature correction of scale from 300 to 320 K were included in this 1983 review of the body of data referred to here as "TAFT scale".

73TAF/TAA R. W. Taft, M. Taagepera, K. D. Summerhays, and J. Mitsky, "Regarding Heats of Solution of Gaseous Anilinium and Pyridinium Ions in Water and Intrinsic Basicities in Aqueous Solution", J. Am. Chem. Soc. 95, 3811 (1973).
ICR. See comments under TAFT.

78TAF/WOL R. W. Taft J. F. Wolf, J. L. Beauchamp, G. Scorrano, and E. M. Arnett, "Solvent Effects of Water and Fluorosulfuric Acid on Proton Transfer Equilibria and the Energies of Solvation of Gaseous Onium Ions", J. Am. Chem. Soc. 100, 1240 (1978).

ICR. See comments under TAFT.

78TAN/MAC K. Tanaka, G. I. Mackay, and D. K. Bohme, "Rate and Equilibrium Constant Measurements for Gas-Phase Proton Transfer Reactions Involving H₂O, H₂S, HCN, and H₂CO", Can. J. Chem. 56, 193 (1978).

Flowing afterglow.

79TAN/MAC S. D. Tanner, G. I. Mackay, A. C. Hopkinson, and D. K. Bohme, "Proton Transfer Reactions of HCO⁺ at 298 K", Int. J. Mass Spectrom. Ion Phys. 29, 153 (1979). Flowing afterglow.

79TIE/AND P. W. Tiedemann, S. L. Anderson, S. T. Ceyer, T.

- Hirooka, C. Y. Ng, B. H. Mahan, and Y. T. Lee, "Proton Affinities of Hydrogen Halides Determined by the Molecular Beam Photoionization Method", J. Chem. Phys. 71, 605 (1979).
- Appearance energies of fragment ions from molecular clusters. 81TRA J. C. Traeger, "Heat of Formation for sec-Butyl Cation in the Gas Phase", Org. Mass Spec. 16, 193 (1981).

Appearance potential of sec-C₄H₉⁺ from halogenated butanes, and correction to 298 K.

81TRA/MCL J. C. Traeger and R. G. McLoughlin, "Absolute Heats of Formation for Gas Phase Cations", J. Am. Chem. Soc. 103, 3647 (1981).

Appearance potentials of CH₃+, C₂H₅+, sec-C₃H₇+, and t-C₄H₆+; evaluation and correction to 298 K.

82TRA/MCL J. C. Traeger, R. G. McLoughlin and A. J. C. Nicholson, "Heat of Formation of Acetyl Cation in the Gas Phase", J. Am. Chem. Soc. 104, 5318 (1982).

Appearance potentials of CH₃CO⁺ ions; correction to 298 K.

78TSA W. Tsang, "Thermal Stability of Primary Amines," Int. J. Chem. Kinet. 10, 41 (1978).

Heats of formation of benzyl, tert-butyl radicals.

- 79VAJ/HAR J. H. Vajda and A. G. Harrison, "Proton Affinities of Some Olefinic Carbonyl Compounds and Heats of Formation of C_nH_{2n-1}O⁺ Ions", Int. J. Mass Spectrom. Ion Phys. 30, 293 (1979). High pressure mass spectrometer. Crotonaldehyde measured vs. acetone, methyl acetate, and ethyl acetate; methacrolein measured vs. acetone, p-dioxane, and n-butyl formate; acrolein measured vs. ethyl formate.
- 82VIL/FUT H. Villinger, J. H. Futrell, F. Howorka, N. Duric, and W. Lindinger, "The Proton Transfer from ArH⁺ to Various Neutrals", J. Chem. Phys. 76, 3529 (1982).
- 75VOG/BEA J. Vogt and J. L. Beauchamp, "Reactions of CHF₂⁺ with n-Donor Bases by Ion Cyclotron Resonance Spectroscopy. The Proton Affinity of Difluorocarbene", J. Am. Chem. Soc. 97, 6682 (1975).

ICR. Bracketing: HCN < CF2 < CH2O

77WAN/DES J.-S. Wang, A. J. DeStefano, and R. F. Porter, "Acidity of B₂H₂+ and Stability of the B₂H₈ Radical", Inorg. Chem. 17, 1374 (1978).

High pressure mass spectrometer. Bracketing:

$C_6H_6 < B_5H_8 < CH_3CHO$.

- 74WAR P. Warneck, "Heat of Formation of the HCO Radical", Z. Naturforsch. 29a, 350 (1974).
- 79WIB/FIS N. Wiberg, G. Fischer and H. Bachhuber, "Diazen und andere Distickstoffhydride: Bildungswarmen,

Dissoziationsenergien, Auftrittspotentiale, Protonenaffinitaten", Z. Naturforsch. 34b, 1385 (1979).

Ionization and appearance potentials in HN=NH, $H_2N=N$, and N_2H_4 .

80WIG/BEA C. A. Wight and J. L. Beauchamp, "Acidity, Basicity, and Ion-Molecule Reactions of Isocyanic Acid in the Gas Phase by Ion Cyclotron Resonance Spectroscopy", J. Phys. Chem. 84, 2503 (1980).

ICR: Related to TAFT scale; temperature corrected to 320 K.

76WIL/LEB A. D. Williamson, P. R. LeBreton, and J. L. Beauchamp, "Photoionization Mass Spectrometry of 2-Fluoropropane and 2,2-Difluoropropane. A Novel Determination of the Proton Affinity of Vinyl Fluoride and 1,1-Difluoroethylene", J. Am. Chem. Soc., 98, 2705 (1976).

Thermochemical cycles based on appearance potentials of CH₂CFX⁺ and CH₃CFX (X=H,F) from CH₃CFXCH₃, and IP(CH₂CFX).

76WIL/LOS C. Willis, F. P. Lossing and R. A. Back, "The Heat of Formation of N₂H₂ and the Proton Affinity of N₂", Can. J. Chem. **54**, 1 (1976).

Heat of formation of N₂H⁺ as a fragment ion in N₂H₂.

75WIL/MCC M. S. Wilson and J. A. McCloskey, "Chemical Ionization Mass Spectrometry of Nucleosides. Mechanisms of Ion Formation and Estimations of Proton Affinity", J. Am. Chem. Soc. 97, 3436 (1975).

High pressure mass spectrometer. Bracketing: All compounds bracketed relative to NH₃, CH₃NH₂, (CH₃)₂NH, and (CH₃)₃N.

- 77WOL/ABB J. F. Wolf, J. L. M. Abboud, and R. W. Taft, "Regarding Polarizability Effects of Hydrocarbon Substituents on Base Strengths in Solution", J. Org. Chem. 42, 3316 (1977). ICR. Results given in figure form.
- 75WOL/HAR J. F. Wolf, P. G. Harch, and R. W. Taft, "Concerning Negligible Aqueous Solvent Effects on Proton Transfer Equilibria of Aryl Carbocations", J. Am. Chem. Soc. 97, 2904 (1975).

ICR: Related to TAFT scale. Data corrected from 300 K to 320 K.

- 77WOL/STA J. F. Wolf, R. H. Staley, I. Koppel, M. Taagepera, R. T. McIver, Jr., J. L. Beauchamp, and R. W. Taft, "Gas Phase Basicities and Relative Proton Affinities of Compounds between Water and Ammonia from Pulsed Ion Cyclotron Resonance Thermal Equilibria Measurements", J. Am. Chem. Soc. 99, 5417 (1977).
 - ICR. Data corrected from 300 K to 320 K (R. W. Taft, personal communication).
- 73YAM/KEB R. Yamdagni and P. Kebarle, "Gas-Phase Basicities of Amines. Hydrogen Bonding in Proton-Bound Amine Dimers and Proton-Induced Cyclization of a,w-Diamines", J. Am. Chem. Soc. 95, 3504 (1973).

High pressure mass spectrometer.

76YAM/KEB R. Yamdagni and P. Kebarle, "Gas Phase Basicities and Proton Affinities of Compounds between Water and Ammonia and Substituted Benzenes from a Continuous Ladder of Proton Transfer Equilibria Measurements" J. Am. Chem. Soc. 98, 1320 (1976).

High pressure mass spectrometer. Data assumed to have been superseded by data in LAU/KEB, when species studied have been duplicated. Other data corrected to LAU/KEB scale; free energy change values multiplied by 1.05.

LIAS, LIEBMAN, AND LEVIN

Table 7. Proton Affinition and heats of formation of molecules and corresponding protonated species

(Prepared in collaboration with Mahnaz Motevalli-Aliabadi)

Formula Compound (M)	Proton Aff	inity	$\Delta_{\mathbf{f}}$ H (M)) .	Reference	$\Delta_{\mathbf{f}}$ H (M	H ⁺)
	kcal/mol k	J/mol	kcal/mol	kJ/mol	***********	kcal/mol	kJ/mol
[Ar] Ar RN 7440-37-1	88.6	371.	0.	0.	DEF	277.	1159.
[AsC ₃ H ₉] (CH ₃) ₃ As RN 593-88-4	213.4	893.	3.	13.(10)	[77PED/RYL]	155.	650.
[AsF ₃] AsF ₃ RN 7784-35-2	155.	648.	-188.	-7 86.	[82/TN270]	23.	95.5
[AsH ₃] AsH ₃ RN 7784-42-1	179.2	750.	16.	66.	[82/TN270]	202.	846.
[B ₂ H ₆] B ₂ H ₆ RN 19287-45-7	~146	~611	9.	36.	[82/TN270]	228.	955.
[B ₃ H ₅ N ₃] B-Borazinyl radical RN xxxxx	193.6	810.					
[B ₃ H ₆ N ₃] Borazine RN 6569-51-3	194.1	812.	-122.	-512.	[82/TN270]	49.	206.
[B4C2H6] 1,6-C2B4H6 RN 20693-67-8	207.	866.	-90.	-378.	Est	68.	286.
[B ₄ H ₈] B ₄ H ₈ RN 12007-71-5	188	787					
[B ₄ H ₁₀] B ₄ H ₁₀ RN 18283-93-7	~144	~602	16.	66.	[82/TN270]	237.	993.5
[B ₅ C ₂ H ₇] 2,4-C ₂ B ₅ H ₇ RN 20693-69-0	168.	703.	-85.	-356.	Est	113.	471.
[B ₅ H ₈] B ₅ H ₈ RN 65930-58-7	184.	770.					
[B ₅ H ₉] B ₅ H ₉ RN 19624-22-7	169.	707.	17.	73.	[82/TN270]	214.	896.
[Br] Br RN 10097-32-2	132.0	552.	26.7	111.7	[82/TN270]	259.3	1085.
[BrCH ₃] CH ₃ Br RN 74-83-9	165.7	693.	-9.	-37. (1)	[77PED/RYL]	191.	800.
[BrCN] BrCN RN 506-68-3	178.3	746.	43.	181.(4)	[77PED/RYL]	231.	965.
[BrC ₅ H ₄ N] 4-Bromopyridine RN 1120-87-2	217.9	912.	38.	161.	Est	186.	779.
[BrC ₅ H ₄ N] 3-Bromopyridine RN 626-55-1	215.1	900.	38.	161.	Est	189.	791.
[BrC ₅ H ₄ N] 2-Bromopyridine RN 109-04-6	214.7	898.	38.	161.	Est	189.	793.
[BrC ₆ H ₅] Bromobenzene RN 108-86-1	182.4	763.	25.	104.(3)	[77PED/RYL]	208.	871.
[BrC ₆ H ₆ N] 3-BrC ₆ H ₄ NH ₂ RN 591-19-5	208.1	871.	26.	108.	Est	183.	767.
[BrC ₇ H ₁₂ N] 3-Bromo-1-azabicyclo[2.2.2]-octane RN xxxxx	227.1*	* 950.**	1.	3.	Est	139.	583.
[BrH] HBr RN 10035-10-6	136	569	-9.	-36.	[82/TN270]	221.	925.
[CC1H ₃] CH ₃ C1 RN 74-87-3	~168	~703	-19.5	-82.(1)	[79KUD/KUD]	178.	745.
[CC1N] C1CN RN 506-77-4	175.7	735.	32.	133.(1)	[77PED/RYL]	222.	928.
[CCl ₂] CCl ₂ RN 1605-72-7	~200.0	~837.	45.	189.	[78AUS/LIA]	211.	882.
[CFH ₃] CH ₃ F RN 593-53-3	150.	628.	-56.	-234.(8)	[78KUD/KUD]	160.	668.
[CF ₂] CF ₂ RN 2154-59-8	171.9	719.	-52.	-217.	[77LIA/AUS]	142.	594.
[CF ₂ H ₂] CH ₂ F ₂ RN 75-10-5	147.	615.	-108.	-453.(8)	[78KUD/KUD]	110.	462.
[CF ₂ O] F ₂ CO RN 353-50-4	160.5	671.5	-153.	-640.(1)	[77PED/RYL]	52.	218.5
[CF ₃ H] CHF ₃ RN 75-46-7	147.	615.	-166.	-695. (8)	[78KUD/KUD]	52.5	220.
[CF ₃ HO ₃ S] CF ₃ SO ₃ H RN 1493-13-6	~169	~707	-282.	-1179.	Est	-85.	_356.
[CF ₃ NO] CF ₃ NO RN 334-99-6	169	707	-126.	-529.	Est	70.	294.
[CF ₄] CF ₄ RN 75-73-0	~126	~527	-223.	-933. (8)	[81BOM/BER]	17.	70.
[CHIN] HNC RN XXXXX	190.2	796.	51.	212. (8)	[82PAU/HEH]	226.	947.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton	Proton Affinity $\Delta_{f}^{H(M)}$			Reference Δ_{f} H (MH ⁺)		
	kcal/mol	kJ/mol	kcal/mol	kJ/mol	k	cal/mol	kJ/mol
CHN] HCN RN 74-90-8	171.	4 717.	32.	135.	[82/TN270]	226.	947.
CHINO] HINCO RN 75-13-8	173.	3 725.	-25.	-105.(13)	[75COM]	167.	700.
CHO] HCO RN 17030-74-9	152.	636.	9.	37. (5)	[82MCM/GOL]	223.	931.
CH ₂ N ₂] CH ₂ N ₂ RN 334-88-3	205.	858.	55.	230.(17)	[78VOG/WIL]	216.	902.
CH ₂ O] HCOH RN XXXXX	229.	958.	31.	131.	[82PAU/HEH2]	168.	703.
CH ₂ O] H ₂ CO RN 50-00-0	171.	7 718.	-26.	-109.(1)	[77PED/RYL]	168.	703.
CH ₂ O ₂] HCOOH RN 64-118-6	178.	8 748.	-90.5	-379.(1)	[78CHA/ZWO]	96.	403.
CH ₂ S] CH ₂ S RN 865-36-1	186.	778.	21.5	90.(8)	[82ROY/MCM]	201.	842.
CH ₃ I] CH ₃ I RN 74-88-4	~171	~715	3.5	15.(1)	[77PED/RYL]	198.	830.
CH ₃ NO] HCONH ₂ RN 75-12-7	198.	4 830.	-44.	-186.	[69BEN/CRU]	123.	514.
CH ₃ NO ₂] CH ₃ ONO RN 624-91-9	192.	5 805.	-16.	-67.(2)	[74BAT/CHR]	157.	658.
CH ₃ NO ₂] CH ₃ NO ₂ RN 75-52-5	179.	2 750.	-18.	-75.(1)	[77PED/RYL]	168.5	705.
CH ₄] CH ₄ RN 74-82-8	132.	0 552.	-18.	-75.	[74SC0]	216.	903.
СН ₄ N] СН ₂ NН ₂ кN 54088-53-8	199	833	36.	149.(8)	[82MCM/GOL]	202.	846.
СН ₄ 0] СН ₃ 0H RN 67-56-1	181.	9 761.	-48.	-202.(1)	[77PED/RYL]	135.5	567.
СН ₄ S] СН ₃ SH RN 74-93-1	187.	4 784.	-5.	-23.(1)	[77PED/RYL]	173.	723.
CH ₅ N] CH ₃ NH ₂ RN 74-89-5	214.	1 896.	-5.	-23.(1)	[77PED/RYL]	146.	611.
СН ₅ Р] СН ₃ РН ₂ RN 593-54-4	204.	1 854.	-7.	-30.	Est	154.	646.
СН ₆ N ₂] СН ₃ NHNH ₂ RN 60-34-4	214.	1** 896.**	23.	95.(1)	[77PED/RYL]	174.	729.
CO] CO RN 630-08-0	141.	9 594.	-26.5	-111.	[82/TN270]	197.	824.
COS] COS RN 463-58-1	151.	632.	-34.	-142.(1)	[77PED/RYL]	181.	756.
CO ₂] CO ₂ RN 124-38-9	130.	9 548.	-94.	-393.	[82/TN270]	141.	589.
CS] CS RN 2944-05-0	175	732	56.	234.	[82/TN270]	247.	1032.
CS ₂] CS ₂ RN 75-15-0	167.	1 699.	28.	117.(1)	[77PED/RYL]	226.5	948.
C ₂ BrH ₅] C ₂ H ₅ Br RN 74-96-4	~171	~715	-15.	-62.(2)	[77PED/RYL]	180.	753.
C ₂ ClH ₂ N] ClCH ₂ CN RN 107-14-2	179.	5 751.	20.5	86.	Est	207.	865.
С ₂ С1H ₃ O ₂] СН ₂ С1СООН RN 79-11-8	182.	4 763.	-104.	-435.(9)	[77PED/RYL]	79.	332.
C ₂ ClH ₅] C ₂ H ₅ Cl RN 75-00-3	169.	707.	-27.	-112.(1)	[77PED/RYL]	170.	711.
C2Cl3HO2] CCl3COOH RN 76-03-9	183.	5 768.	-106.	-444.(10)	Est	76.	318.
C ₂ Cl ₃ H ₃ O] Cl ₃ CCH ₂ OH RN 115-20-8	177.	4 742.	-70.	-293.	Est	118.	495.
C ₂ Cl ₃ N] CCl ₃ CN RN 545-06-2	175.	8 735.5	19.5	82.	Est	209.	876.5
C ₂ D ₆ O] (CD ₃) ₂ O RN 17222-37-6	190.	6 797.	-44.	-184.(1)	[77PED/RYL]	131.	549.
C ₂ FH ₃] C ₂ H ₃ F RN 75-02-5	175.	732.	-33.	-139.(2)	[76WIL/LEB]	157.	659.
С2ГН3О2] СН2ГСООН RN 144-49-0	183.	5 768.	-140.	-586.	Est	42.	176.
C ₂ FH ₅] C ₂ H ₅ F RN 353-36-6	165.	690.	- 63.	-263.(2)	[75CHE/ROD]	138.	577.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton Aff	inity	$\Delta_{\mathbf{f}}$ H (M	1)	Reference	Δ_{f} H (MH $^+$)		
	kcal/mol k	J/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol	
[C ₂ FH ₆ N] CH ₂ FCH ₂ NH ₂ RN 406-34-8	212.3	888.	-55.	-229.	Est	99.	413.	
[C ₂ F ₂ H ₂] CH ₂ CF ₂ RN 75-38-7	176	736	-82.	-345.(10	[76WIL/LEB]	107.	449.	
[C ₂ F ₂ H ₂] (E)-CHFCHF RN 1630-78-0	166	694	-70.	-293.	[80STA/VOG]	130.	543.	
[C ₂ F ₂ H ₄ O] CF ₂ HCH ₂ OH RN 359-13-7	176.2	737.	-155.	-649.	Est	34.	144.	
[C ₂ F ₂ H ₅ N] CF ₂ HCH ₂ NH ₂ RN 430-67-1	207.5	868.	110.	462.(6)	Est	269.	1124.	
[C ₂ F ₃ H] C ₂ F ₃ H RN 359-11-5	~169	~707	-117.	-491.(8)	[77PED/RYL]	79.	332.	
[C ₂ F ₃ HO] CF ₃ CHO RN 75-90-1	165.1	691.	-189.	-790.(50)	[75HAR/THY]	12.	49.	
[C ₂ F ₃ HO ₂] CF ₃ COOH RN 76-05-1	169.0	707.	-246.	-1031.(1)	[77PED/RYL]	-50.	-208.	
[C ₂ F ₃ H ₃ O] CF ₃ CH ₂ OH RN 75-89-8	169.0	707.	-212.	-888.(5)	[77PED/RYL]	-15.5	-65.	
[C ₂ F ₃ H ₄ N] CF ₃ CH ₂ NH ₂ RN 753-90-2	202.5	847.	-167.5	-701.	Est	-4.	-18.	
[C ₂ F ₃ N] CF ₃ CN RN 353-85-5	166.1	695.	-118.	-495.(3)	[71JANAF]	81.	340.	
[C ₂ F ₄ O] CF ₃ CFO RN 354-34-7	160.2	670.	-249.	-1042.	Est	-43.5	-182.	
[C ₂ H ₂] C ₂ H ₂ RN 74-86-2	153.3	641.	54.	228.(1)	[82/TN270]	266.9	1117.	
[C ₂ H ₂ O] CH ₂ C=O KN 463-51-4	198.0	828.	-11.	-48.(8)	[71NUT/LAU]	157.	657.	
C ₂ H ₃] C ₂ H ₃ radical RN 2669-89-8	~181	~757	70.5	295.(8)	[82MCM/GOL]	255.	1068.	
(C ₂ H ₃ N) CH ₃ CN RN 75-05-8	188.4	788.	18.	74.(1)	[83AN/MAN]	195.	816.	
C ₂ H ₃ NS] CH ₃ SCN RN 556-64-9	195.9	820.	38.	160.	[82/TN270]	208.	870.	
[C ₂ H ₃ NS] CH ₃ NCS RN 556-61-6	195.9	820.	31.	131.	[82/TN270]	201.	841.	
[C ₂ H ₄] C ₂ H ₄ RN 74-85-1	162.6	680.	12.	52.(1)	[77PED/RYL]	215.6	902.	
[C ₂ H ₄ N ₂] NCCH ₂ NH ₂ RN XXXXX	197.4	826.	26.	108.	Est	194.	812.	
[C ₂ H ₄ O] c-C ₂ H ₄ O (Oxirane) RN 75-21-8	187.9	786.	-13.	-53.(1)	[77PED/RYL]	165.	691.	
[C ₂ H ₄ O] CH ₃ CHO RN 75-07-0	186.6	781.	-40.	-166.(1)	[77PED/RYL]	139.	583.	
[C ₂ H ₄ O ₂] CH ₃ COOH RN 64-19-7	190.2	796.	-103.	-432.(1)	[77PED/RYL]	72.	302.	
[C ₂ H ₄ O ₂] HCO ₂ CH ₃ RN 107-31-3	188.9	790.	-85.	-356.(1)	[77PED/RYL]	92.	384.	
[C ₂ H ₄ S] c-C ₂ H ₄ S (Thiirane) RN 420-12-2	194.6	814.	19.5	82.(1)	[77PED/RYL]	191.	798.	
[C ₂ H ₅ I] C ₂ H ₅ I RN 75-03-6	~176	~736	-2.	-9.(1)	[77PED/RYL]	187.5	785.	
[C ₂ H ₅ N] Aziridine (Azirane) RN 151-56-	215.7	902.	30.	127.(1)	[77PED/RYL]	180.	755.	
[C ₂ H ₅ N] CH ₂ =CHNH ₂ RN 593-67-9	219.1	917.	7.	29.	[81ELL/DIX]	154.	643.	
[C ₂ H ₅ N] CH ₃ CH=NH RN 20729-41-3	213.9	895.	2.	8.(17)	[79ELL/EAD]	154.	643.	
[C ₂ H ₅ NO] CH ₃ CONH ₂ RN 60-35-5	206.2	863.	- 57.	-238.(1)	[77PED/RYL]	103.	429.	
[C ₂ H ₅ NO] HCONHCH ₃ RN 123-39-7	205.8	861.	-45.	-187.(3)	Est	115.	481.	
[C ₂ H ₅ NO ₂] NH ₂ CH ₂ COOH (Glycine) RN 56-40-	-6 211.6	885.	-93.	-391.(5)	[77NGA/SAB]	61.	254.	
[C ₂ H ₅ NO ₂] C ₂ H ₅ ONO RN 109-95-5	197.3	825.5	-25.	-103.	[74BAT/CHR]	144.	601.5	

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

Formula Compound (M)	Proton Affinity $\Delta_{\mathbf{f}}^{H}(M)$			Reference	Δ _E H (MH ⁺)		
	kcal/mol k	J/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mo]
[C ₂ H ₅ NO ₂] C ₂ H ₅ NO ₂ RN 79-24-3	184.8	773.	-24.	-102.(1)	[77PED/RYL]	156.5	655.
[C ₂ H ₅ P] c-C ₂ H ₄ PH (Phos <i>p</i> hirane) RN 6569-82-0	191.4	801.	-16.	-69. (2)	Est	158.	660.
[C ₂ H ₆] C ₂ H ₆ RN 74-84-0	143.6	601.	-20.	-84.	[74SC0]	202.	845.
[С ₂ Н ₆ Нg] Сн ₃ НgСн ₃ RN 593-74-8	~186	~778	22.	94.(1)	[77PED/RYL]	202.	846.
[C ₂ H ₆ N ₂] (E)-CH ₃ N=NCH ₃ RN 4143-41-3	206.9	866.	36.	149.	[82PAM/ROG]	194.	813.
[C ₂ H ₆ O] (CH ₃) ₂ O RN 115-10-6	192.1	804.	-44.	-184.(1)	[77PED/RYL]	130.	542.
[C ₂ H ₆ O] C ₂ H ₅ OH RN 64-17-5	188.3	788.	-56.	-235.(1)	[77PED/RYL]	121.	507.
[C ₂ H ₆ OS] (CH ₃) ₂ SO RN 67-68-5	211.3	834.	- 36.	-151.(1)	[77PED/RYL]	118.	495.
[C ₂ H ₆ S] (CH ₃) ₂ S RN 75-18-3	200.6	839.	-9 .	-38.(1)	[77PED/RYL]	156.	653.
[C ₂ H ₆ S] C ₂ H ₅ SH RN 75-08-1	190.8	798.	-11.	-46.(1)	[77PED/RYL]	164.	686.
[C ₂ H ₆ S ₂] CH ₃ SSCH ₃ RN 624-92-0	~196	~820	-6.	-24.(1)	[77PED/RYL]	164.	686.
[C ₂ H ₇ N] (CH ₃) ₂ NH RN 124-40-3	220.6	923.	-4.5	-19.(1)	[77PED/RYL]	140.5	588.
[C ₂ H ₇ N] C ₂ H ₅ NH ₂ RN 75-04-7	217.0	908.	-11.	-48.(1)	[77PED/RYL]	137.	574.
[C ₂ H ₇ NO] NH ₂ (CH ₂) ₂ OH RN 141-43-5	221.3	926.	-48.	-202.	[77REI/PRA]	96.	402.
(C ₂ H ₇ O ₃ P) (CH ₃ O) ₂ PHO RN 868-85-9	207.2	867.					
[C ₂ H ₇ P] (CH ₃) ₂ PH RN 676-59-5	216.3	905.	-16.	-66.	Est	134.	559.
[C ₂ H ₈ N ₂] 1,2-Diaminoethane RN 107-15-3	225.9	945.	-4.	-18.(2)	[77PED/RYL]	135.	567.
[C ₂ H ₈ N ₂] (CH ₃) ₂ NNH ₂ RN 57-14-7	219.9	920.	20.	84.(2)	[77PED/RYL]	166.	694.
[C ₂ N ₂] NCCN RN XXXXX	162.	678.					
[C ₃] C ₃ RN 12075-35-3	~185	~774	200 (4)	837 (17)	[83RAK/BOH]	~381. ~	1593.
[C ₃ ClH ₄ N] Cl (CH ₂) ₂ CN RN 542-76-7	187.5	784.5	10.	41.	Est	188.	786.5
[C ₃ FH ₅ O] CH ₃ COCH ₂ F RN 430-51-3	192.0	803.	-91.5	-383.	Est	82.	344.
[C ₃ FH ₈ N] FCH ₂ CH ₂ CH ₂ NH ₂ RN 462-41-9	217.8	911.	-61.	-254.	Est	87.	365.
[C ₃ F ₂ H ₄ O] CFH ₂ COCFH ₂ RN 453-14-5	187	782	-126.	-529.	Est	52.	219.
[C ₃ F ₃ H ₃ O] CH ₃ COCF ₃ RN 421-50-1	174.2	729.	-194.	-812.	Est	-3.	-11.
[C ₃ F ₃ H ₃ O ₂] HCOOCH ₂ CF ₃ RN 32042-38-9	179.4	751.	-256.	-1073.	Est	-70.	-293.5
[C ₃ F ₃ H ₃ O ₂] CF ₃ CC XCH ₃ RN 431-47-0	178.8	748.	-242.	-1013.	Est	- 55.	-231.
[C ₃ F ₃ H ₆ N] CF ₃ CH ₂ CH ₂ NH ₂ RN 460-39-9	210.6	881.	- 175.	-731.	Est	-20.	-82.
[C ₃ F ₃ H ₆ N] CF ₃ CH ₂ NHCH ₃ RN 2730-67-8	209.8	878.	- 167.	-699.	Est	-11.	-47.
[C ₃ F ₃ H ₆ N] CF ₃ N(CH ₃) ₂ RN 677-41-8	193.8	811.	-187.	-784. (15)	Est	-15.	- 65.
[C ₃ F ₄ H ₂ O] CF ₂ HCOCF ₂ H RN 360-52-1	170.	711.	-228.	-953.	Est	-32.	-134.
[C ₃ F ₅ N] C ₂ F ₅ CN RN 422-04-8	167.1	699.	-219.	-917. (29)	[73THY/HAR]	-20.5	-86.
[C3F6H2O] (CF3) 2CHOH RN 920-66-1	165.0	690.	-381	-1595.	Est	-180.	-754.
[C ₃ F ₆ O] (CF ₃) ₂ CO RN 684-16-2	161.5	676.	-334.	-1397.	[72GOR/T600]	-130.	-543.
[C ₃ GeH ₈] (CH ₃) ₂ Ge=CH ₂ RN 82064-99-1 [C ₃ HN] HCCCN RN XXXXX	204.9 184.	857. 770.	19.	81.	[82PIE/HEH]	180.	754.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton Affir	nity	∆ fH (M)		Reference	∆ _f H(M	H ⁺)
	kcal/mol kJ/	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₃ H ₂ N ₂] CH ₂ (CN) ₂ RN 109-77-3	175.6	735.	63.5	266.(2)	[77PED/RYL]	254.	1061.
$^{\mathrm{C_3H_3}]}$ c- $^{\mathrm{C_3H_3}}$ radical RN xxxxx	175.8	735.	99.	414. (17)	[82MCM/GOL]	289.	1210.
C ₃ H ₃ N] CH ₂ =CHCN RN 107-13-1	189.7	794.	44.	184.	[82CHU/NGU]	220.	920.
C ₃ H ₃ NO] Oxazole RN 288-42-6	208.4	872.	-4.	-16.(1)	[78MCC/HAM]	153.	642.
C ₃ H ₃ NO] Isooxazole RN 288-14-2	202.3	846.	19.	79.(1)	[78MCC/HAM]	182.	763.
C ₃ H ₃ NS] Thiazole RN 288-47-1	213.2	892.	36.5	153.(10)	Est	189.	791.
C ₃ H ₃ N ₃] 1,3,5-Triazine RN 290-87-9	201.1	841.	54.	226.(1)	[82BYS]	219.	915.
C ₃ H ₄] Cyclopropene RN 2781-85-3	198	828	66.	277.(3)	[77PED/RYL]	234.	979.
C ₃ H ₄] H ₂ C=C=CH ₂ RN 463-49-0	186.3	779.	46.	191.(1)	[77PED/RYL]	225.	942.
С ₃ Н ₄] CH ₃ CCH RN 74-99-7	182	761	45.	187.(2)	[77PED/RYL]	228.	956.
$^{\mathrm{C_{3}H_{4}N_{2}}}$ Imidazole RN 288-32-4	219.8	920.	35.	145.(2)	[80SAB]	180.5	755.
C ₃ H ₄ N ₂] Pyrazole RN 288-13-1	209.8	878.	44.	185.(2)	[80SAB]	200.	837.
C ₃ H ₄ O] CH ₃ CH=CO RN 6004-44-0	199.4	834.	-25.	-105.	[80DEM/WUL]	141.	591.
C ₃ H ₄ O] CH ₂ =CHCHO RN 107-02-8	193.9	811.	-18.	-77.	[79VAJ/HAR]	153.	642.
C ₃ H ₅] c-C ₃ H ₅ radical RN xxxxx	188.	787.	62.	261.	[80DEF/MCI]	240.	1004.
${ m C_3H_5}]$ ${ m CH_2}$ =CH-CH $_2$ radical RN xxxxx	175.8	735.	43.	179.	[81TSA]	229.	958.5
C ₃ H ₅ N] 1-Azabicyclo[1.1.0]butane RN 19540-05-7	212**	887**	75.	314.	Est	229.	957.
С ₃ Н ₅ N] НСССН ₂ NН ₂ RN 2450-71-7	210.8	882.	53.	222.	Est	208.	870.
C ₃ H ₅ N] C ₂ H ₅ CN RN 107-12-0	192.6	806.	12.	51.	[82CHU/NGU]	185.	775.
C ₃ H ₅ O ₃ P] 2,6,7-Trioxa-1-phospha- bicyclo[2.2.1.]heptane RN 279-53-8	194.0	812.	-146.5	-613.	Est	25.	105.
C ₃ H ₆] c-C ₃ H ₆ RN 75-19-4	179.8	752.	13.	53.(1)	[77PED/RYL]	198.5	831.
C_3H_6] $CH_3CH=CH_2$ RN 115-07-1	179.5	751.	5.	20.(1)	[77PED/RYL]	191.	799.
$C_3H_6N_2$] $H_2N(CH_2)_2CN$ RN 151-18-8	207.0	866.	22.	91	Est	180.	755.
C ₃ H ₆ N ₂] CH ₃ NHCH ₂ CN RN 5616-32-0	206.0	862.	25.5	107.	Est	185.	775.
C ₃ H ₆ O] CH ₂ =CHOCH ₃ RN 107-25-5	207.4	868.	-24.	-100.(7)	Est	134.	562.
C ₃ H ₆ O] c-C ₃ H ₆ O (Oxetane) RN 503-30-0	196.9	824.	-19.	-81.(1)	[77PED/RYL]	149.	625.
C_3H_6O] (CH ₃) ₂ CO RN 67-64-1	196.7	823.	-52.	-217.(1)	[76CHA/ZWO]	117.	490.
C ₃ H ₆ O] 2-Methyloxirane RN 75-56-9	194.7	815.	-23.	-95.(1)	[77PED/RYL]	148.	620.
С ₃ H ₆ O] С ₂ H ₅ CHO RN 123-38-6	189.6	793.	- 45.	-187.(2)	[77PED/RYL]	131.	550.
[C ₃ H ₆ O ₂] CH ₃ COOCH ₃ RN 79-20-9	197.8	828.	-99.	-414.(1)	[*80SVO/UCi-	69.	288.
$C_3H_6O_2$] $HCO_2C_2H_5$ RN 109-94-4	193.1	808.	-92.	-387.	Est	80.	335.
С ₃ H ₆ O ₂] С ₂ H ₅ СООН RN 79-09-4	191.8	802.	-107.	-448.(2)	[77PED/RYL]	67.	279.5
C3H6O3] (CH3O)2CO RN 616-38-6	200.2	838.		-550.	Est	34.	142.
C ₃ H ₆ S] Thietane RN 287-27-4	201.3**				[77PED/RYL]		749.
C ₃ H ₆ S] 2-Methylthiirane RN 1072-43-1		839.*	* 11.	46 (0)	[77PED/RYL]	176.	737.

ormula Compound (M)		Proton Affinity)	Reference	$\Delta_{ extsf{f}}$ H (MH $^+$)	
	kcal/mol kJ,	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₃ H ₇ N] CH ₂ =C(CH ₃)NH ₂ RN 4427-28-5	226.3	947.	8.	32.	Est	147.	615.
C ₃ H ₇ N] Azetidine RN 503-29-7	223.5	935.	24.	99.(4)	Est	166.	694.
C ₃ H ₇ N] N-Methylaziridine RN 1072-44-2	221.6	927.	30.	127.	Est	174.	730.
C ₃ H ₇ N] (CH ₃) ₂ C=NH RN 38697-07-3	221	925	2.	10.	[70BEN/O`N]	147.	615.
C ₃ H ₇ N] 2-Methylaziridine RN 75-55-8	219.2**	917.**	22.	91.(6)	Est	168.	704.
С ₃ H ₇ N] H ₂ C=CHCH ₂ NH ₂ RN 107-11-9	215.8	903.	14.	57.	Est	163.5	684.
C ₃ H ₇ N] c-C ₃ H ₅ NH ₂ RN 765-30-0	215.0**	899.**	18.	77.(1)	[77PED/RYL]	169.	708.
C ₃ H ₇ NO] (CH ₃) ₂ NCHO RN 68-12-2	211.4	884.	-46.	-192.(2)	[77PED/RYL]	108.	453.5
C ₃ H ₇ NO ₂] Sarcosine RN xxxxx	218.7	915.	-88.	-367.(1)	[78SAB/LAF]	59.	248.
C ₃ H ₇ NO ₂] L-Alanine RN 56-41-7	214.8	899.	-99.	-415.(4)	[77NGA/SAB]	52.	216.
C ₃ H ₇ NO ₂] i-C ₃ H ₇ ONO RN 541-42-4	201.9	845.	-32.	-133.(4)	[74BAT/CHR]	132.	552.
C ₃ H ₇ NO ₂ S] L-Cysteine RN 3374-22-9	214.3	897.					
C ₃ H ₇ NO ₃] L-Serine RN 302-84-1	216.8	907.	-134.	-561.	Est	15.	62.
C ₃ H ₇ O ₃ P] 2-Methoxy-1,3,2- dioxaphospholane RN 3741-36-4	212.7	890.	-164.	-688.	Est	-11.	-48.
C ₃ H ₈] C ₃ H ₈ RN 74-98-6	150.	628.	-25.	-105.	[74SC0]	191.	797.
C ₃ H ₈ O] CH ₃ OC ₂ H ₅ RN 540-67-0	196.4	822.	-52.	-216.(1)	[77PED/RYL]	118.	492.
С ₃ H ₈ O] i-С ₃ H ₇ OH RN 67-63-0	191.2	800.	-65.	-273.(1)	[77PED/RYL]	109.	457.
C ₃ H ₈ O] n-C ₃ H ₇ OH RN 71-23-8	190.8	798.	-61.	-255.(1)	[77PED/RYL]	114.	476.
C ₃ H ₈ Pb] (CH ₃) ₂ Pb=CH ₂ RN 82065-01-8	223.9	937.	59.	247.	[82PIE/HEH]	200.	840.
[C ₃ H ₈ S] CH ₃ SC ₂ H ₅ RN 624-89-5	203.5	851.	-14.	-60.(1)	[77PED/RYL]	148.	619.
[C ₃ H ₈ S] i-C ₃ H ₇ SH RN 75-33-2	194.1	812.	-18.	-76.(1)	[77PED/RYL]	153.	642.
C ₃ H ₈ S] n-C ₃ H ₇ SH RN 107-03-9	191.6	802.	-16.	-68.(1)	[77PED/RYL]	158.	660.
[C ₃ H ₈ S1] (CH ₃) ₂ S1=CH ₂ KN 4112-23-6	226.4	947.	-1.	-5.	[82PIE/HEH]	138.	579.
[C ₃ H ₈ Sn] (CH ₃) ₂ Sn=CH ₂ RN 82065-00-7	215.8	903.	31.5	132.	[82PIE/HEH]	181.	759.
[C ₃ H ₉ N] (CH ₃) ₃ N RN 75-50-3	225.1	942.	-6.	-24.(1)	[77PED/RYL]	135.	564.
[C ₃ H ₉ N] (CH ₃) (C ₂ H ₅) NH RN 624-78-2	222.8	932.	-11.	-46.(2)	Est	132.	552.
[C ₃ H ₉ N] i-C ₃ H ₇ NH ₂ RN 75-31-0	218.6	915.	-20.	-84.(1)	[*79MAJ/SVO]	127.	531.
[C ₃ H ₉ N] n-C ₃ H ₇ NH ₂ RN 107-10-8	217.9	912.	-17.	-70.(1)	[*79MAJ/SVO]	131.	548.
[C ₃ H ₉ NO] NH ₂ (CH ₂) ₃ OH RN 156-87-6	228.6	956.5	-52.	-218.	Est	85.	356.
[C ₃ H ₉ NO] CH ₃ OCH ₂ CH ₂ NH ₂ RN 109-85-3	223.3	934.	-44.	-184.(3)	Est	98.	412.
[C3H9O3P] P(OCH3)3 RN 121-45-9	220.6	923.	-167.	-697. (20)	Est	-21.	-92.
[C ₃ H ₉ O ₃ PS] SP(OCH ₃) ₃ RN 29952-66-7	214.5	897.	-183.	-767.	Est	-32.	-134.
[C ₃ H ₉ O ₄ P] OP(OCH ₃) ₃ RN 512-56-1	212.0	887.	-264.5	-1107.	Est	-111.	-464.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

Formula Compound (M)	roton Affi	nity	∆ £H (M	1)	Reference	$\Delta_{\mathbf{f}}$ H (M	H ⁺⁾
<u> </u>	cal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
[C3H9P] (CH3)3P RN 594-09-2	227.1	950.	-24.	-101. (5)	[77PED/RYL]	114.	479.
[C ₃ H ₁₀ N ₂] 1,3-Diaminopropane RN 109-76-2	2 234.1	979.	-8.	-32.	Est	124.	518.
[C ₃ H ₁₀ OSi] (CH ₃) ₃ SiOH See References to	Table 1: 7	5PIT/BU	JR				
[C ₄ F ₂ H ₇ NO] CF ₂ HCON (CH ₃) ₂ RN 667-50-5	207.2	867.					
[C ₄ F ₃ H ₅ O ₂] CF ₃ CO ₂ C ₂ H ₅ RN 383-63-1	184.6	772.	-249.	-1042.	Est	-68.	-284.
[C ₄ F ₃ H ₇ O] C ₂ H ₅ OCH ₂ CF ₃ RN 461-24-5	186.4	780.	-216.	-904.	Est	-37.	-154.
[C ₄ F ₃ H ₈ N] CF ₃ CH ₂ N(CH ₃) ₂ RN 819-06-7	215.0	900.	-167.	-700.	Est	-17.	-69.
[C ₄ F ₃ H ₈ N] CF ₃ (CH ₂) ₃ NH ₂ RN 819-46-5	214.3	897.	-180.	-755.	Est	-29.	-121.5
[C ₄ F ₄ H ₄ O ₂] CF ₃ CXXCH ₂ CH ₂ F RN 1683-88-1	178.6	747.	-292.5	-1224.	Est	-105.	-441.
[C ₄ F ₆ H ₄ O] (CF ₃) ₂ C(CH ₃)OH RN 1515-14-6	167.0	699.	-391.	-1636.	Est	-192.	-805.
[C ₄ F ₇ N] C ₃ F ₇ CN RN 375-00-8	167.4	700.	-308.	-1290. (40)	[73THY/HAR]	-110.	-460.
[C ₄ F ₉ HO] (CF ₃) ₃ COH RN 2378-02-1	163.1	682.	-549.	-2297.	Est	-346	-1449.
[C ₄ F ₉ H ₂ N] (CF ₃) ₃ CNH ₂ RN 2809-92-9	191.5**	801.**	-503.	-2104.	Est	-329	-1375.
[C ₄ H ₄ N ₂] Pyridazine RN 289-80-5 (1,2-Diazine)	215.6	902.	66.	278.(1)	[77PED/RYI.]	216.5	906.
[C ₄ H ₄ N ₂] Pyrimidine (1,3-Diazine) RN 289-95-2	210.5	881.	46.	193. (2)	[77NAB/SAB]	201.	842.
[C ₄ H ₄ N ₂] Pyrazine (1,4-Diazine) RN 290-37-9	209.0	874.	47.	196.(2)	[81STE/BAR]	203.5	852.
[C ₄ H ₄ N ₂ O] 2(1H)-Pyrimidinone RN 557-01-	7 ~208	~870	-11.	-47.	Est	146.	613.
[C ₄ H ₄ N ₂ O ₂] Uracil RN 66-22-8	~208	~870	-72.	-303.(2)	[77NAB/SAB]	85.	357.
[C ₄ H ₄ N ₂ S ₂] Dithiouracil RN 2001-93-6	~217	~907	51.	214.	Est	200.	836.
[C ₄ H ₄ O] Furan RN 110-00-9	192.2	804.	-8.	-35.(1)	[77PED/RYL]	165.	691.
$[C_4H_4S]$ c- C_4H_4S (Thiophene) RN 110-02-1	196.5	822.	27.	115.(1)	[81KUD/KUD3] 197.	823.
[C ₄ H ₅ N] Pyrrole RN 109-97-7	207.6	868.	26.	108.	[80WIL/BAE]	184.	769.
[C ₄ H ₅ N] C-C ₃ H ₅ CN RN 5500-21-0	195.4	817.5	44.	183.(1)	[82FUC/HAL]	214.	895.5
[C ₄ H ₅ NO ₂] NCCOOC ₂ H ₅ RN 623-49-4	179.5	751.	-52.	-217.	Est	134.	562.
[C ₄ H ₅ N ₃ O] Cytosine RN 71-30-7	223.8	936.	-14.	-59.(10	[80SAB2]	128.	535.
[C ₄ H ₆] 1-Methylcyclopropene RN 3100-04-7	206	862	58.	244.(1)	[77PED/RYL]	218.	912.
[C ₄ H ₆] (E)-CH ₂ =CHCH=CH ₂ RN 106-99-0	193**	807.5	* 26.	110.(1)	[77PED/RYL]	199.	832.5
$[{\bf C_4H_6}]$ Cyclobutene RN 822-35-5 Note: H	191** Weat of for	799** mation			[77PED/RYL] = 225 kcal/mo		888. kJ/mol
[C4H6] CH3CCCH3 RN 503-17-3	187**	782**	35.	145.(1)	[77PED/RYL]	213.	893.
$[C_4H_6N_2]$ 1-Methylimidazole KN 616-47-7	228.9	958.	43.5	182.	Est	180.	754.
$[C_4H_6N_2]$ 4-Methylimidazole RN 822-36-6	224.4	939.	26.	110.	Est	167.	701.
[C ₄ H ₆ O] CH ₂ =CHCOCH ₃ RN 78-94-4	200.2	838.	-29.	-125.	[79VAJ/HAR]	136.	567.
[C ₄ H ₆ O] CH ₃ CH=CHCHO RN 4170-30-3	199.7	835.5	-22.	-91.(E)	[79VAJ/HAR]	144.	603.5
[C4H6O] CH2=C(CH3)CHO RN 78-85-3	195.2	817.	-25.	-106.	[79VAJ/HAR]	145.	607.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	roton Affin	ity	$\Delta_{\mathbf{f}}$ H (M))	Reference	∆ _f н (мн ⁺⁾	
	cal/mol kJ/	mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₄ H ₆ O ₂] CH ₃ COCOCH ₃ RN 431-03-8	194.8	815.	-78.	-327.	[77PED/RYL]	93.	388.
[C ₄ H ₇ N] i-C ₃ H ₇ CN RN 78-82-0	194.3	813.	5.	23.	[82CHU/NGU]	177.	740.
[C ₄ H ₇ N] n-C ₃ H ₇ CN RN 109-74-0	193.7	810.	7.	31.	[82CHU/NGU]	179.	751.
[C ₄ H ₇ NO ₄] L-Aspartic Acid RN 617-45-8	216.7	907.	-193.	-808.	Est	-44.	-184.5
[C ₄ H ₇ O ₂] 1,4-Dioxyl radical RN 4598-47-4	193.8	811.					
[C ₄ H ₇ O ₃ P] 2,6,7-Trioxa-1-phosphabicyclo- [2.2.2]octane RN 280-45-5	207.1	866.5	-128.5	-538.	Est	30.	125.5
<pre>[C₄H₇O₃P] l-Methyl-2,6,7-trioxa-l-phosph bicyclo[2.2.1]heptane RN 61580-09-4</pre>	a- 198.1	829.	-154.	-646.	Est	13.	55.
[C ₄ H ₈] (CH ₃) ₂ C=CH ₂ RN 115-11-7	195.9	820.	-4.	-17.(1)	[77PED/RYL]	166.	693.
[C ₄ H ₈] E-CH ₃ CH=CHCH ₃ RN 624-64-6	179.4	751.	-3.	-12.(1)	[77PED/RYL]	183.	767.
[C ₄ H ₈ N ₂] NCCH ₂ N(CH ₃) ₂ RN 926-64-7	211.1	883.	34.	141.	Est	188.	788.
[C ₄ H ₈ N ₂ O ₃] L-Asparagine RN 3130-87-8	219.8	920.	-141.	-591.	Est	5.	19.
[C ₄ H ₈ O] C ₂ H ₅ OCH=CH ₂ RN 109-92-2	208.2	871.	-34.	-141.(1)	[77PED/RYL]	124.	518.
[C4H80] CH3CCC2H5 RN 78-93-3	199.8	836.	-57.	-239.(1)	[76CHA/ZWO]	109.	455.
[C ₄ H ₈ O] c-C ₄ H ₈ O (Tetrahydrofuran) RN 109-99-9	198.8	831.	-44.	-184.(1)	[77PED/RYL]	123.	514.
[C ₄ H ₈ O] i-C ₃ H ₇ CHO RN 78-84-2	192.6	806.	-52.	-216.(1)	[77PED/RYL]	121.	508.
[C ₄ H ₈ O] n-C ₃ H ₇ CHO RN 123-72-8	191.5	801.	-50.	-208.(2)	[77PED/RYL]	124.	521.
[C4H8O2] C2H5COOCH3 RN 554-12-1	200.2	838.	-103.	-432.	[80HOL/LOS]	62.	260.
[C ₄ H ₈ O ₂] 1,3-Dioxane RN 505-22-6	198.8	832.	-81.	-338.(1)	[82BYS/MAN]	86.	360.
[C ₄ H ₈ O ₂] 1,4-Dioxane RN 123-91-1	193.8	811.	- 75 . 5	-316.(1)	[82BYS/MAN]	96.	403.
[C4H8O2] CH3CCC2H5 RN 141-78-6	200.7	840.	-106.	-443.(1)	[*80SVO/UCH	1] 59.	247.
[C4H8O2] HCOOCH (CH3) 2 RN 625-55-8	196.0	820.	-97.	-405.	[70BEN/O'N]	73.	305.
$[C_4H_8O_2]$ $HCO_2(n-C_3H_7)$ RN 110-74-7	194.2	812.5	-110.	-462.	[*805VO/UCH	61.	255.5
$[C_4H_8O_2S]$ $C_2H_5S(OCH_3)CO$ RN 38103-96-7	201.0	841.	-100.	-420.	Est	64.	269.
IC ₄ H ₈ O ₃ l C ₂ H ₅ OCOOCH ₃ RN 623-53-0	202.7	848.	-141.	-592.	Est	21.5	90.
$[C_4H_9N]$ (CH ₃) 2NCH=CH ₂ RN 5763-87-1	227.8	953.	15.	62.	Est	153.	639.
[C ₄ H ₉ N] Pyrrolidine RN 123-75-1	225.2	942.	-1.	-3.(1)	[77PED/RYL]	140.	585.
[C ₄ H ₉ N] CH ₃ CH=NC ₂ H ₅ RN 1190-79-0	222.7	932.	4.	18.(1)	Est	147.	616.
$ \begin{tabular}{ll} $[{\tt C_4H_9N}]$ & ${\tt CH_2=C(CH_3)CH_2NH_2}$ & ${\tt RN}$ & $2878-14-0$ \\ \end{tabular} $	218.2**	913.*	* 5.	21.	Est	152.5	638.
[C ₄ H ₉ NO] Morpholine RN 110-91-8	219.4	918.	12.	51.	Est	158.	663.
$[{\rm C_4H_9NO}]$ Dimethylacetamide RN 127-19-5	216.8	907.	-55.6	-233.	[*78BEA/LEI	E] 93.	390.
[C ₄ H ₉ NO] n-C ₃ H ₇ NHCHO RN 6281-94-3	210.0**	879.	-61.	-256.	Est	94.5	395.
$[C_4H_9NO_2]$ t- C_4H_9ONO RN 540-80-7	205.7	861.	-41.	-172.(4)	[74BAT/CHR]	119.	497.
[C4H9NO3] L-Threonine RN xxxxx	218.6	915.	-141.	-592.	Est	6.	23.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

'ormula Compound (M)	Proton Aff	inity	$\Delta_{f^{H}}$ (1	M)	Reference	$\Delta_{\mathbf{f}}$ H (MH $^+$)		
	kcal/mol k	J/mol	kcal/mo	l kJ/mol		kcal/mol	kJ/mol	
C ₄ H ₉ O ₃ P] 2-Methoxy-1,3,2-dioxa- phosphorinane RN 31121-06-9	219.4	918.	-175.	- 733 .	Est	-29.	-121.	
$[C_4H_{10}]$ iso- C_4H_{10} RN 75-28-5	163.3	683.	-32.	-135.	[74SCO]	170.	712.	
(C ₄ H ₁₀ N ₂) Piperazine RN 110-85-0	224.2	938.	6.	25.(1)	Est	147.	617.	
$[C_4H_{10}N_2]$ c-C(CH ₃) (C ₂ H ₅) NHNH RN 4901-75	-1 214.9	** 899.*	* 32.	133.(17)	Est	182.5	764.	
[C ₄ H ₁₀ O] t-C ₄ H ₉ OH RN 75-65-0	193.7	810.	- 75.	-312.(3)	[77PED/RYL]	97.	408.	
[C ₄ H ₁₀ O] n-C ₄ H ₉ OH RN 71-36-3	191.1	799.5	-66.	-275.(1)	[77PED/RYL]	109.	455.5	
[C ₄ H ₁₀ O] (C ₂ H ₅) ₂ O RN 60-29-7	200.2	838.	-60.	-252.(1)	[*80MAJ/WAC]	105.5	440.	
[C ₄ H ₁₀ O ₂] HO(CH ₂) ₄ OH RN 110-63-4	212**	887**	-102.	-427.(3)	Est	52.	216.	
$[{ m C_4H_{10}O_2}]$ ${ m CH_3OCH_2CH_2OCH_3}$ RN 110-71-4	204.9	857.	-81.	-340.	[67LOU/LAI]	79.5	333.	
$[C_4H_{10}S]$ $(C_2H_5)_2S$ RN 352-93-2	205.0	858.	-22.	-94.(1)	[77PED/RYL]	138.	578.	
$[C_4H_{10}S]$ t- C_4H_9SH RN 75-66-1	196.9	824.	-26.	-110.(1)	[77PED/RYL]	142.5	596.	
[C ₄ H ₁₁ N] (CH ₃) ₂ (C ₂ H ₅)N RN 598-56-1	227.5	952.	-11.	-47.(2)	Est	127.	531.	
$[C_4H_{11}N]$ $(C_2H_5)_2NH$ RN 109-89-7	225.9	945.	-17.	-73.(1)	[*79MAJ/SVO	125.	512.	
[C ₄ H ₁₁ N] t-C ₄ H ₉ NH ₂ RN 75-64-9	220.8	924.	-29.	-121.(1)	[77PED/RYL]	116.	485.	
$[C_4H_{11}N]$ sec- $C_4H_9NH_2$ RN 13952-84-6	220.5	922.	-25.	-105.(1)	[*79MAJ/SVO]	120.	502.5	
[C ₄ H ₁₁ N] i-C ₄ H ₉ NH ₂ RN 78-81-9	218.8	915.	-24.	-100.(1)	[*79MAJ/SVO]	123.	515.	
[C ₄ H ₁₁ N] n-C ₄ H ₉ NH ₂ RN 109-73-9	218.4	914.	-22.	-92.(1)	[*79MAJ/SVO	125.	524.	
[C ₄ H ₁₁ NO] NH ₂ (CH ₂) ₄ OH RN 13325-10-5	233.8	978.	-57.	-240.	Est	74.5	312.	
[C ₄ H ₁₂ N ₂] 1,4-Diaminobutane RN 110-60-	1 237.6	994.	-13.	-53.	Est	115.	483.	
[C ₄ H ₁₂ OSi] (CH ₃) ₃ SiOCH ₃ RN 1825-61-2	~203	~849	-112.	-468.(8)	Est	51.	213.	
[C ₄ H ₁₄ OSi ₂] ((CH ₃) ₂ SiH) ₂ O RN 3277-26-7	~203	~849	-156.	- 655 .	Est	6.	26.	
[C ₄ NiO ₄] (CO) ₄ Ni RN 13463-39-3	180**	753**	-143.	-598.(4)	[77PED/RYL]	43.	179.	
[C ₅ ClH ₃ N ₄] 6-Chloropurine RN 87-42-3	~208	~870	43.	179.	Est	200.	839.	
[C ₅ ClH ₄ N] 4-Chloropyridine RN 626-61-9	217.8	911.	26.	108.	Est	174.	727.	
[C ₅ ClH ₄ N] 3-Chloropyridine RN 626-60-8	214.8	899.	26.	108.	Est	177.	739.	
[C ₅ ClH ₄ N] 2-Chloropyridine RN 109-09-1	214.4	897.	25.	103.	Est	176.	736.	
[C ₅ FH ₄ N] 4-Fluoropyridine RN 694-52-0	216.6	906.	-14.	-57.	Est	135.	567.	
[C ₅ FH ₄ N] 3-Fluoropyridine RN 372-47-4	214.3	897.	-13.	- 56.	Est	138.	577.	
[C ₅ FH ₄ N] 2-Fluoropyridine RN 372-48-5	210.6	881.	-16.	-68.	Est	139.	581.	
$[C_5F_3H_7O_2]$ $CF_3CO_2(n-C_3H_7)$ RN 383-66-4	185.7	777.	-254.	-1064.	Est	-74.	-311.	
[C ₅ FeO ₅] (CO) ₅ Fe RN 13463-40-6	~202	~8 4 5	-173.	- 725 . (7)	[77PED/RYL]	-9.5	-40.	
[C ₅ HMnO ₅] (CO) ₅ MnH RN 16972-33-1	201**	841**	-177.	-740.(10)	[82CON/ZAF]	-12.	-51.	
[C ₅ H ₄ N ₂ O ₂] 4-Nitropyridine RN 1122-61-	8 208.5	872.	33.	137.	Est	190.	795.	
[C ₅ H ₄ N ₄] Purine RN 120-73-0	219.3	917.5	55.	230.	Est	201.	842.5	

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton Affi	-	Δ _f H(M)		Reference	∆ _E H(M	
	kcal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₅ H ₄ N ₄ O] Hypoxanthine RN 68-94-0	~217	~907	12.	50.	[*/85CHI]	~161.	~672.
C ₅ H ₅] c-C ₅ H ₅ radical RN xxxxx	~199	~833	58.	242.(6)	[82McM/GOL]	229.	957.
C ₅ H ₅ N) Pyridine RN 110-86-1	220.8	924.	33.	140.(1)	[79KUD/KUD3]	178.	746.
C ₅ H ₅ NN10) (C ₅ H ₅)N1NO RN 12071-73-7	200.1**	637.**					
C ₅ H ₅ NO) Pyridine-N-oxide RN 694-59-7	220.3	922.	14.5	61.	Est	160.	669.
C ₅ H ₅ N ₅] Adenine RN 73-24-5	223.5	935.	49.	207. (8)	[83KIR/DOM]	191.	802.
C ₅ H ₅ N ₅ O] Guanine RN 73-40-5	~223	~933	0.5	2.	[*/85CHI]	~143	~599.
C ₅ H ₆] c-C ₅ H ₆ RN 542-92-7	199.6	835.	31.	131.(4)	[77PED/RYL]	197.	826.
C ₅ H ₆ N ₂ } 2-Fyridinamine KN 504-29-0	223.8	936.	28.	118.(1)	[84BIC/PIL]	170.	711.
C ₅ H ₆ N ₂] 3-Pyridinamine RN 462-08-8	221.0	925.	34.	144.(2)	[84BIC/PIL]	179.	749.
[C ₅ H ₆ N ₂] 4-Pyridinamine RN 504-24-5	230*	962*	31.	130.(1)	[84BIC/PIL]	167.	697.
[C ₅ H ₆ N ₂ O ₂] Thymine RN 65-71-4	208.8	874.	-79 .	-329.(4)	[77NAB/SAB]	78.	327.
[C ₅ H ₆ O] 2-Methylfuran RN 534-22-5	205.6	860.	-19.	-80.	Est	141.	590.
[C ₅ H ₆ S] 2-Methylthiophene RN 554-14-3	205.7	861.	20.	84.(1)	[77PED/RYL]	180.	753.
[C ₅ H ₈] 3,3-Dimethylcyclopropene RN 3907-06-0	203	849	50.	209.	[79AUE/BOW]	213.	890.
[C ₅ H ₈] (E)-1,3-Pentadiene RN 2004-70-8	201.8**	844.**	* 18.	77.(1)	[77PED/RYL]	182.	763.
[C ₅ H ₈] 1-Methylcyclobutene RN xxxxx	201	841	28.	118.	[79AUE/BOW]	193.	807.
[C ₅ H ₈] CH ₂ =CHC (CH ₃)=CH ₂ RN 78-79-5	200.4**	838.**	* 18.	75.(1)	[77PED/RYL]	183.	767.
[C ₅ H ₈] (CH ₃) ₂ CHCCH RN 598-23-2	198**	828**	32.5	136.	[69BEN/CRU]	200.	838.
[C ₅ H ₈] c-C ₃ H ₅ CH=CH ₂ RN 693-86-7	197.6	827.	36.	149.(1)	[*81CHI/HYM]	204.	852.
[C ₅ H ₈] C ₂ H ₅ CCCH ₃ RN 627-21-4	196**	820**	30.5	128. (4)	[77PED/RYL]	200.	838.
(C ₅ H ₈) c-C ₅ H ₈ RN 142-29-0	183.4	767.5	9.	36. (2)	[82ALL/DOD]	191.	799.
[C ₅ H ₈ O] c-C ₃ H ₅ COCH ₃ RN 765-43-5	205.1	858.	-28.	-119.(1)	[83FUC/SMI]	133.	555.
[C ₅ H ₈ O] Cyclopentanone RN 120-92-3	198.8	832.	-46.	-194.(2)	[*76MEY/HOT]	121.	506.
[C ₅ H ₈ O ₂] CH ₃ COCH=C(OH)CH ₃ RN 123-54-6	207.8	869.	-92.	-384.(1)	[79HAC/PIL]	66.	277.
[C ₅ H ₈ O ₂] c-C ₃ H ₅ COOCH ₃ RN 2868-37-3	202.9	849.	-74.	-308.	[83FUC/SMI]	89.	373.
(C ₅ H ₉ N) n-C ₄ H ₉ CN RN 110-59-8	194.0	812.	2.	10.	[82CHU/NGU]	174.	728.
(C ₅ H ₉ NO) c-C ₄ H ₆ N (2-OCH ₃) RN 5264-35-7	225.9	945.	-36.	-152.	Est	103.	433.
[C ₅ H ₉ NO] 1-Methy1-2-pyrrolidinone RN 872-50-4	216.8	907.	-50.	-211.	(*72GAF)	98.	412.
[C ₅ H ₉ NO ₂] c-C ₄ H ₇ NH (2-COOH) (L-Proline) RN 609-36-9	220.2	921.	-87.	-366.(4)	[78SAB/LAF]	58.	243.
[C5H9NO3] CH3CONHCH2COOCH3 RN XXXXX	217.7	911.	-140.	-585.	Est	8.	34.
[C5H9NO4] L-Glutamic Acid RN 617-65-2	216.5	906.	-120.	-503.	Est	29.	121.

Nable 2. Proton attinities and heats of formation of molecules and corresponding protonated species--Continued

Formula Compound (M)	Proton Affi	nity	Δ _f H (M))	Reference	$\Delta_{\mathbf{f}}$ H (Mi	ł ⁺⁾
	kcal/mol kJ,	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
[C ₅ H ₉ O ₃ P] 4-Methyl-3,6,7,-trioxa-1-phosp [2.2.2.]-octane RN 1449-91-8	oha- 210.0	879.	-136.	-571.	Est	19.	80.
$[C_5H_{10}]$ $(CH_3)_2C=CHCH_3$ RN 513-35-9	196.4	822.	-10.	-42.(1)	[77PED/RYL]	159.	666.
$[C_5H_{10}N_2O_3]$ L-Glutamine RN 585-21-7	218.4	914.	-74.5	-312.	Est	73.	304.
[C ₅ H ₁₀ O] c-C ₄ H ₇ O(2-CH ₃) RN 96-47-9	203.6	852	-52.	-218.	Est	110.	461.
$[C_5H_{10}O]$ $(C_2H_5)_2CO$ RN 96-22-0	201.4	843.	-62.	-258.(1)	[*79SAL/PEA]	102.	429.
$[C_5H_{10}O]$ $(i-C_3H_7)$ COCH ₃ RN 563-80-4	201.1	841.	-63.	-262.(1)	[77PED/RYL]	102.	427.
[C ₅ H ₁₀ O] c-C ₅ H ₁₀ O RN 142-68-7	199.7	835.5	-53.	-223.(1)	[77PED/RYL]	113.	471.5
[C ₅ H ₁₀ O] n-C ₄ H ₉ CHO RN 110-62-3	192.6	806.	-55.	-231.(3)	[77PED/RYL]	118.	493.
[C ₅ H ₁₀ O ₂] i-C ₃ H ₇ COOCH ₃ RN 547-63-7	201.6	843.	-109.	-456.(1)	[83FUC/SMI]	55.	231.
$[C_5H_{10}O_2]$ $CH_3COOC_3H_7$ RN 109-60-4	200.6	839.	-108.5	-454.	[70BEN/O'N]	57.	237.
$[C_5H_{10}O_2]$ $C_3H_7COOCH_3$ RN 623-42-7	200.1	837.	-108.	-452.	[70HOL/LOS]	57.	241.
$[C_5H_{10}O_2]$ $HCO_2(n-C_4H_9)$ RN 592-84-7	194.8	815.	-103.	-430.	Est	68.	285.
[C ₅ H ₁₁ N] CH ₃ CH=CHN(CH ₃) ₂ RN 6163-56-0	229.4	960.	6.	26.	Est	142.	596.
$[C_5H_{11}N]$ (CH ₃) $_2C=NC_2H_5$ RN 15673-04-8	229.5**	960.*	* - 9.	-36. (9)	Est	127.5	534.
$[C_5H_{11}N]$ N-Methylpyrrolidine RN 120-94-	-5 228.7	957.	-0.5	-2.(2)	Est	136.5	571.
[C ₅ H ₁₁ N] Piperidine RN 110-89-4	226.4	947.	-12.	-49.(2)	[77PED/RYL]	128.	535.5
[C ₅ H ₁₁ NO ₂] (CH ₃) ₂ CHCH (NH ₂) COOH (L-Valine) RN 72-18-4	217.0	908.	-109.	-455.(1)	[77PED/RYL]	40.	167.
$[C_5H_{11}NO_2]$ (CH ₃) $_2NCOOC_2H_5$ RN 687-48-9	213.7	894.	-109.	-456.	Est	43.	180.
${\rm [C_5H_{11}NO_2S]}$ L-Methionine RN 59-51-8	221.4	926.	-99.	-414.(4)	[81SAB/MIN]	45.	190.
$[C_5H_{12}O]$ $C_2H_5O(i-C_3H_7)$ RN 625-54-7	203.5	851.	-68.	-286.	Est	94.	393.
[C ₅ H ₁₂ O] t-C ₄ H ₉ OCH ₃ RN 1634-04-4	202.2	846.	-69.	-288.(4)	Est	95.	396.
$[C_5H_{12}O_2]$ CH_3O (CH_2) $_3OCH_3$ RN 17081-21-9	213.8	894.					
$[C_5H_{13}N]$ (CH ₃) (C ₂ H ₅) ₂ N RN 616-39-7	230.0	962.	-17.	-70.	Est	119.	498.
$[C_5H_{13}N]$ $(CH_3)_2(i-C_3H_7)N$ RN 996-35-0	229.8	961.	-24.	-99.	Est	112.	470.
$[C_5H_{13}N]$ (C_2H_5) $(i-C_3H_7)$ NH RN 19961-27-	4 227.4	951.	- 25	-105.	Est	113.	474.
$[C_5H_{13}N]$ t- $C_5H_{11}NH_2$ RN 594-39-8	222.3	930.	-31.5	-132.	Est	112.	468.
[C ₅ H ₁₃ N] neo-C ₅ H ₁₁ NH ₂ RN 5813-64-9	219.3	917.5	-30.	-127.	Est	115.	480.5
[C ₅ H ₁₃ N] n-C ₅ H ₁₁ NH ₂ RN 110-58-7	218.9	916.	-26.	-110.	Est	120.5	504.
[C ₅ H ₁₄ N ₂] 1,5-Diaminopentane RN 462-94	-2 238.1	996.	-17.	-73.	Est	110.	461.
[C ₅ H ₁₄ N ₂] (CH ₃) ₂ N(CH ₂) ₃ NH ₂ RN 109-55-	7 236.4	989.	-7.	-30.	Est	122.	511.
$[C_5H_{15}NSi]$ (CH ₃) ₃ SiN(CH ₃) ₂ RN 18135-0	5-2 ~226	~946	-59(1)	-248 (3)	[77PED/RYL]	81.	336.
[C ₆ ClH ₅] Chlorobenzene RN 108-90-7	181.7	760.	12.	51.(1)	[77PED/RYL]	196.	821.
[C ₆ ClH ₆ N] 2-Chloro-6-methylpyridine RN 18368-63-3	219**	916**	14.5	61.	Est	161.	675.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species—Continued

Formula Compound (M)	Proton Affi	nity	∆ _£ H (M)		Reference	Δ _€ н (м	H ⁺)
	kcal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₆ ClH ₆ N] 2-Chloro-4-methylpyridine RN 3678-62-4	218.6**	915.**	16.	66.	Est	163.	681.
[C ₆ ClH ₆ N] 4-Chlorobenzenamine RN 106-47	-8 208.6	873.	13.	55.	Est	170.	712.
[C ₆ ClH ₆ N] 3-Chlorobenzeneamine RN 108-42	-9 207.2	867.	13.	55.	Est	172.	718.
[C ₆ ClH ₆ NO] 6-Chloro-1-methyl-2(lH)- pyridinone RN 17228-63-6	217.8	911.	-21.	-88. (16)	Est	127.	531.
[C ₆ ClH ₆ NO] 2-Chloro-6-methoxypyridine RN 17228-64-7	215.9	903.	-21.	-89.	Est	128.5	538.
[C ₆ CrO ₆] (CO) ₆ Cr KN 13007-92-6	180**	753**	-217.	-908.(1)	[77PED/RYL]	-31.	-131.
[C ₆ FH ₅] Fluorobenzene RN 462-06-6	182.6	764.	-28.	-116.(1)	[77PED/RYL]	155.	650.
[C ₆ FH ₆ N] 4-Fluorobenzenamine RN 371-40-4	208.1	871.	-26.	-109.	Est	131.5	550.
[C ₆ FH ₆ N] 3-Fluorobenzenamine RN 372-19-0	207.0	866.	-27.	-112.	Est	132.	552.
$[C_6F_2H_4]$ 1,2-Difluorobenzene RN 367-11	-3 181.8	761.	-70.	-294.(1)	[77PED/RYL]	114.	475.
$[C_6F_2H_4]$ 1,3-Difluorobenzene RN 372-18	-9 181.5	759.	-74.	-309.(1)	[77PED/RYL]	110.	462.
$[C_6F_2H_4]$ 1,4-Difluorobenzene RN 540-36	-3 181.2	758.	-73.	-307.(1)	[77PED/RYL]	111.	465.
[C ₆ F ₃ H ₃] 1,2,4-C ₆ H ₃ F ₃ RN 367-23-7	181.4	759.	-115.	-482.(1)	Est	69.	289.
[C ₆ F ₃ H ₃] 1,3,5-C ₆ H ₃ F ₃ RN 372-38-3	181.	757.	-122.	-512.(3)	Est	62.	261.
[C ₆ F ₃ H ₄ N] 4-Trifluoromethylpyridine RN 3796-24-5	212.8	890.	-128.	-536.	Est	25.	104.
$[C_6F_3H_4N]$ 3-Trifluoromethylpyridine RN 3796-23-4	212.6	889.	-128.	-537.	Est	25.	103.5
$[C_6F_3H_4N]$ 2-Trifluoromethylpyridine RN 368-48-9	211.5	885.	-127.	-532.	Est	27.	113.
[C ₆ F ₃ H ₉ O ₂] CF ₃ CO ₂ (n-C ₄ H ₉) RN 367-64-6	185.8	777.	-259.	-1085.	Est	-79.	-332.
$[C_6F_3H_{10}NO]$ $CF_3CONH(n-C_4H_9)$ RN 400-59-9	203.6	852.	-216.	-904.	Est	-54.	-226.
[C ₆ F ₄ H ₂] 1,2,3,4-C ₆ H ₂ F ₄ RN 551-62-2	181.1	758.	-152.	-638.(1)	Est	32.	134.
$[C_6F_4H_2]$ 1,2,3,5- $C_6H_2F_4$ RN 2367-82-0	180.6	756.	-157.	-657.(1)	Est	28.	117.
[C ₆ F ₄ H ₂] 1,2,4,5-C ₆ H ₂ F ₄ RN 327-54-8	179.7	752.	-155.	-647.(3)	[78HAR/HEA]	31.	131.
[C ₆ F ₅ H] C ₆ HF ₅ RN 363-72-4	179.9	753.	-193.	-806. (7)	[77PED/RYL]	-7.	-29.
[C ₆ F ₆] C ₆ F ₆ RN 392-56-3	177.7	743.	-226.	-946. (8)	[79PRI/SAP]	-38.	-159.
[C ₆ H ₃ MnO ₅] (CO) ₅ MnCH ₃ RN 13601-24-6	183	76 6	-180.	-753.(4)	[82CON/ZAF]	3.	11.
[C ₆ H ₃ O ₅ Re] (CO) ₅ ReCH ₃ RN 14524-92-6	187**	782**	-183.	-765.(10)	[77TEL/RAB]	-4.	-17.
[C ₆ H ₄] o-Benzyne RN xxxxx	213.0	891.	119.	497.	[80POL/HEH]	271.	1136.
[C ₆ H ₄ N ₂] 2-Pyridinecarbonitrile RN 100-70-9	208.1	871.	67.	281. (2)	[84BIC/PIL]	225.	940.
[C ₆ H ₄ N ₂] 3-Pyridinecarbonitrile RN 100-54-9	209.3	876.	66.	278. (2)	[84BIC/PIL]	222.	932.
[C ₆ H ₄ N ₂] 4-Pyridinecarbonitrile RN 100-48-1	210.3	880.	68.	284.(1)	[84BIC/PIL]	223.	934.
[C ₆ N ₅ NO] Nitrosobenzene RN 586-96-9	204.8	857.					

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species—Continued

Formula Compound (M)	Proton Affi	nity	$\Delta_{\mathbf{f}}$ H (M)		Reference	∆ _f H (M	H ⁺)
1	kcal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₆ H ₅ NO] 4-Pyridinecarboxaldehyde RN 872-85-5	215.2**	900.**	6.	24.	Est	156.	654.
[C ₆ H ₅ NO ₂] C ₆ H ₅ NO ₂ RN 98-95-3	193.4	809.	16.	68.(1)	[77PED/RYL]	188.5	789.
[C ₆ H ₅ O] C ₆ H ₅ O radical RN xxxxx	~204	~853	11.	48.	[82MCM/GOL]	173.	724.5
[C ₆ H ₆] Benzene RN 71-43-2	181.3	759.	20.	83.(1)	[77PED/RYL]	204.	854.5
[C ₆ H ₆ IN] 3-IC ₆ H ₄ NH ₂ RN 626-01-7	208.9	874.	40.	166.	Est	196.	822.
[C ₆ H ₆ N] C ₆ H ₅ NH radical RN xxxxx	219	916	57.	237.(8)	[82MCM/GOL]	198.4	830.
[C ₆ H ₆ N ₄] 6-Methylpurine RN 2004-03-7	~223	~933	42.5	178.	Est	185.	775.
[C ₆ H ₆ O] C ₆ H ₅ OH RN 108-95-2	196.3	821.	-23.	-96.(1)	[78KUD/KUD]	146.	613.
[C ₆ H ₆ O] (HCCCH ₂) ₂ O RN 6921-27-3	190.8	798.	71.	299.	Est	246.	1031.
[C ₆ H ₇ N] 4-Methylpyridine RN 108-89-4	225.2	942.	25.	104.(1)	[77PED/RYL]	165.	692.
[C ₆ H ₇ N] 2-Methylpyridine RN 109-06-8	225.0	942.	24.	99.(1)	[77PED/RYL]	164.	688.
[C ₆ H ₇ N] 3-Methylpyridine RN 108-99-6	224.1	938.	25.	106.(1)	[77PED/RYL]	167.	698.
[C ₆ H ₇ N] (HCCCH ₂) ₂ NH RN 6921-28-4	216.1	904.	113.	472.(4)	Est	262.	1098.
[C ₆ H ₇ N] C ₆ H ₅ NH ₂ RN 62-53-3	209.5	876.	21.	87.(1)	[78COL/BEN]	177.	740.5
[C ₆ H ₇ NO] 4-Methoxypyridine RN 620-08-6	227.6	952.	-3.	-13.	Est	135.	565.
[C ₆ H ₇ NO] 3-Methoxypyridine RN 7295-76-	3 223.6	935.	-4.	-16.	Est	138.	578.5
[C ₆ H ₇ NO] 2-Methoxypyridine RN 1628-89-3	221.9	928.	-12.	-52.	Est	131.	550.
[C ₆ H ₇ NO] 1-Methyl-2-pyridinone RN 694-85-9	220.2	921.	-20.	-85.(10) Est	125.	524.
[C ₆ H ₇ NO] 2-(OH)C ₆ H ₄ NH ₂ RN xxxxx	214.2	896.	-20.	-85.	Est	131.	549.
[C ₆ H ₇ NO] 3-(OH)C ₆ H ₄ NH ₂ RN 591-27-5	214.2	896.	-23.	- 95.	Est	129.	539.
[C ₆ H ₇ NS] 4-(Methylthio)-pyridine RN 22581-72-2	225.5**	943.**	* 37.	155.	Est	177.	741.5
$[C_6H_7NS]$ 2-(Methylthio)-pyridine RN 18438-38-5	222.0	929.	33.	138.	Est	177.	739.
[C ₆ H ₈] 1-Methyl-3-methylenecyclobutene RN 15082-13-0	212**	887**	48.	202.	[79AUE/BOW]	202.	845.
[C ₆ H ₈ N ₂] 1,2-C ₆ H ₄ (NH ₂) ₂ RN 95-54-5	212.8	890.	22.	92.(5)	Est	175.	732.
$[C_6H_8N_2]$ 1,3- $C_6H_4(NH_2)_2$ RN 108-45-2	222.4	930.5	21.	88.	Est	164.	687.5
$[C_6H_8N_2]$ 1,4- $C_6H_4(NH_2)_2$ RN 106-50-3	215.9	903.	23.	97.	Est	173.	723.
[C ₆ H ₈ O] 2,5-Dimethylfuran RN 625-86-5	209.1	875.	-30.	-125.	Est	127.	530.
$[C_6H_8O_2]$ 1,3-Cyclohexanedione RN 504-02-	9 211.9	886.	- 79.	-330.	Est	75.	313.
[C ₆ H ₈ O ₂] 1,2-Cyclohexanedione RN 765-87	7-7 204.8	857.	-70.	-293.(2)	Est	91.	380.
[C ₆ H ₉ N] 2,5-Dimethylpyrrole RN 625-84-	3 218.4	914.	9.5	40.(1)	[77PED/RYL]	157.	656.
[C ₆ H ₉ N ₃ O ₂] L-Histidine RN xxxxx	231.9	970.	-31.	-129.	Est	103.	431.
$[C_6H_9O_3P]$ 2,8,9,-Trioxa-l-phosphadamanta RN 281-33-4	ne 213.8	894.	-166.	-694.	Est	-14.	- 58.

GAS PHASE BASICITIES AND PROTON AFFINITIES OF MOLECULES

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

Formula	Compound (M) Pr	oton Affii	nity	$\Delta_{\mathbf{f}}$ H (M)		Reference	∆ _£ H (M	H ⁺)
<u> </u>	ko	al/mol kJ	/mol k	cal/mol l	kJ/mol	k	cal/mol	kJ/mo
	1,3,3-Trimethylcyclopropene 64-56-0	214.**	895**	41.	173.	[80WOL/HOL]	193.	808.
[C ₆ H ₁₀]	c-C ₃ H ₅ C(CH ₃)=CH ₂ RN 4663-22-3	209.0	874.	22.	94.	[82KOZ/MAS]	179.	750.
[C61110]	CII3CII-CIIC (CII3) -CH2 RN 1118-58-7	207.9**	870.**	11.	46.	Est (E)	169.	706.
[C ₆ H ₁₀]	CH_2 = $CH(CH_3)C(CH_2)_2$ RN 16906-27-7	206	862	21.	88.	[79AUE/BOW]	181.	756.
[C ₆ H ₁₀]	CH3CH=C(CH3)CH=CH2 RN 4549-74-0	205.7**	860.6**	10.	43.	[80WOL/HOL]	170.	712.
[C ₆ H ₁₀]	CH ₂ =C(CH ₃)C(CH ₃)=CH ₂ RN 513-81-5	202.1**	846.**	10.5	44.(1)	[77PED/RYL]	174.	728.5
	1,2-Dimethylcyclobutene 01-58-2	201	841	17.	73.	[76JEN]	182.	762.
[C ₆ H ₁₀]	c-C ₅ H ₈ =CH ₂ RN 1528-30-9	200.8	840.	3.	12. (2)	[82ALL/DOD]	168.	702.
[C ₆ H ₁₀]	1-Methylcyclopentene RN 693-89-0	196.9	824.	-1.	-4.(1)	[82ALL/DOD]	168.	702.
[C ₆ H ₁₀]	c-C ₆ H ₁₀ RN 110-83-8	189.3	792.	-1.	-5.(1)	[77PED/RYL]	175.	733.
[C ₆ H ₁₀ O] Cyclohexanone RN 108-94-1	201.4	843.	-54.	-226. (2)	[*76MEY/HOT]	110.	461.
(С ₆ н ₁₀ 0) (CH ₂ =CHCH ₂) ₂ O RN 557-40-4	200.4	838.	-7.	-31.	Est	158.	661.
[C ₆ H ₁₀ O	2] CH3COCH2CH2COCH3 RN 110-13-4	213.2	892.	-89.	-372.	Est	63.5	266.
(C6H11N] (CH ₂ =CHCH ₂) ₂ NH RN 124-02-7	224.7	940.	34.	146.(6)	Est	175.	735.
(C ₆ H ₁₁ N	0] c-C ₅ H ₈ N(2-OCH ₃) RN 53687-79-9	228.1	954.	-42.	-176.(8)	Est	95.5	400.
(C ₆ H ₁₁ N	O] c-C ₅ H ₈ N(2-O)1-CH ₃ RN 931-20-4	219.3	917.5	-57.	-237.(3)	[*74BEA/MUE]	90.	375.5
	O ₃] CH ₃ CONHCH(CH ₃)COOCH ₃ etyl alanine methyl ester) RN xxxxx	224.5	939.	-145.5	-609.	Est	-4.	-18.
[C ₆ H ₁₂]	(CH ₃) ₂ C=C(CH ₃) ₂ RN 563-79-1	199.0	833.	-16.	-69.(1)	[77PED/RYL]	150.	628.
[C ₆ H ₁₂]	CH ₃ CH=C(CH ₃)C ₂ H ₅ RN 922-61-2	198.2	829.	-15.	-64.(1)	(E) [77PED/RYL]	152.	638.
[C ₆ H ₁₂]	(CH ₃) ₂ C=CHCH ₂ CH ₃ RN 625-27-4	197.9	828.	-16.	-67.(1)	[77PED/RYL]	152.	635.
[C ₆ H ₁₂]	c-C ₆ H ₁₂ RN 110-82-7	~169	~707	-29.	-123.(1)	[77PED/RYL]	167.	700.
	2] 1,4-Diazabicyclo[2.2.2]octane 0-57-9	229.0	958.	21.	89. (7)	[71RAP/WES]	158.	661.
[C ₆ H ₁₂ O] t-C ₄ H ₉ COCH ₃ RN 75-97-8	202.3	846.	-69.	-290.(1)	[77PED/RYL]	94.	394.
^{[C} 6 ^H 12 ^O] 2,2-Dimethyltetrahydrofuran	205.4	859.					
[C ₆ H ₁₂ O] c-C ₆ H ₁₂ O (Oxepane) RN 592-90-5	2 02	845	-3.	-12.	Est	161.	673.
[C ₆ H ₁₂ O;	2] t-C ₄ H ₉ COOCH ₃ RN 598-98-1	202.8	848.5	-117.	-491.(1)	[*82FUC]	45.5	190.5
[C ₆ H ₁₃ N	(CH ₃) ₂ NC(CH ₃)=CHCH ₃ RN 52113-79-	-8 237	992	0.2	1.	Est	129.	539.
[C ₆ H ₁₃ N] (CH ₃) ₂ C=CHN(CH ₃) ₂ RN xxxxx	229.5	960.					
[C ₆ H ₁₃ N]] 1-Methylpiperidine RN 626-67-5	229.7	961.	-12.	-50.(4)	Est	124.	519.
[C ₆ H ₁₃ N]	n-C ₃ H ₇ CH=NC ₂ H ₅ RN 1611-12-7	225.3**	943.**	-5.	-21.	Est	135.	566.
[C ₆ H ₁₃ N]] c-C ₆ H ₁₁ NH ₂ RN 108-91-8	221.2	925.5	-25.	-105.(1)	[79STE]	120.	500.
[C ₆ H ₁₃ N RN 73-3	0 ₂] L-C ₂ H ₅ CH (CH ₃) CH (NH ₂) СООН 32-5	218.9	916.	-116.	-487.(10) Est	30.	127.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton Aff	inity	$\Delta_{\mathbf{f}}$ H (M)		Reference	∆ fH (MH ⁺)
	kcal/mol k	J/mol	kcal/mol	kJ/mol		kcal/mol kJ/mol
C ₆ H ₁₃ NO ₂] (CH ₃) ₂ CHCH ₂ CH(NH ₂)COOH (L-Leucine) RN 61-90-5	218.1	912.5	-117.	-488. (3)	[77PED/RYL]	31. 129.5
C ₆ H ₁₃ O ₃ P] cis,cis-2-Methoxy-4,6-dimeth 1,3,2-dioxaphosphorinane RN 7735-82-2		946.	-182.	-760.	Est	-42176.
$^{ m C_6H_{13}O_3P}$ trans-2-Methoxy-cis,cis-4,6-dimethyl-1,3,2-dioxaphosphorinane RN		941	-182.	-760 .	Est	-41171.
C ₆ H ₁₄ N ₂ O ₂] L-Lysine RN 56-87-1	230.3	963.5	-125.	-522.	Est	11. 44.5
C ₆ H ₁₄ O] (i-C ₃ H ₇) ₂ O RN 108-20-3	206.0	862.	- 76.	-319.(2)	[*80MAJ/WAG	84. 350.
C ₆ H ₁₄ O] C ₂ H ₅ O(t-C ₄ H ₉) RN 637-92-3	205.3	859.	-77.	-324.	Est	83. 347.
$C_6H_{14}O$] (n- C_3H_7) ₂ O RN 111-43-3	202.3	846.	-70.	-293.(2)	[*80MAJ/WAG]	93. 391.
$C_6H_{14}O_2$] $CH_3O(CH_2)_4OCH_3$ RN 13179-96-9	221.8	928.	-98.	-408.	Est	46. 194.
$C_6H_{14}OSi$] $CH_2=C(CH_3)OSi(CH_3)_3$ RN 1833-	53-0 221.	925.	-104.	-437.	Est	40. 168.
C ₆ H ₁₄ O ₃] CH ₃ (OCH ₂ CH ₂) ₂ OCH ₃ RN 111-96-	6 219.4	918.	-119.	-498.	Est	27. 114.
$C_6H_{14}S$] (i- C_3H_7) ₂ S RN 625-80-9	209.6	877.	-34.	-142.(1)	[77PED/RYL]	122. 511.
(C ₆ H ₁₄ S] (n-C ₃ H ₇) ₂ S RN 111-47-7	206.5	864.	-30.	-125.(1)	[77PED/RYL]	129. 541.
C ₆ H ₁₅ N] (C ₂ H ₅) ₃ N RN 121-44-8	232.3	972.	-22.	-93.(1)	[*79MAJ/SVO]	111. 465.
C ₆ H ₁₅ N] (CH ₃) ₂ (t-C ₄ H ₉)N RN 918-02-5	232.0	971.	-24.	-102.	Est	109. 457.
(C ₆ H ₁₅ N) (i-C ₃ H ₇) ₂ NH RN 108-18-9	230.2	963.	-34.	-144.(1)	[*79PET/MAJ]	101. 423.
(C ₆ H ₁₅ N) (n-C ₃ H ₇) ₂ NH RN 142-84-7	227.5	952.	-28.	-116.(1)	[77PED/RYL]	110. 462.
C ₆ H ₁₅ N] n-C ₆ H ₁₃ NH ₂ RN 111-26-2	218.9	916.	-31.	-130.	Est	116. 484.
(C ₆ H ₁₅ NO) NH ₂ (CH ₂) ₆ OH RN 4048-33-3	231.0*	* 966.5*	* - 67.	-279.	Est	68. 284.5
$(C_6H_{15}O_4P)$ OP $(CC_2H_5)_3$ RN 78-40-0	~217	~910	-284.	-1187.(6)	[77PED/RYL]	-135 565 .
C ₆ H ₁₅ P] (C ₂ H ₅) ₃ P RN 554-70-1	231.7*	* 969.**	-12.	-49.(13) [77PED/RYL]	122. 512.
C ₆ H ₁₆ N ₂] 1,6-diaminohexane RN 124-09-	4 237.7	994.4	-22.	-94.	Est	105.5 441.5
[C ₆ H ₁₆ N ₂] (CH ₃) ₂ N(CH ₂) ₂ N(CH ₃) ₂ RN 110-1	.8-9 235.7	986.	-4.	-16.(2)	Est	126. 528.
C ₆ H ₁₇ NSi] (CH ₃) ₃ SiCH ₂ N(CH ₃) ₂ RN 18182-40-6	231.5	968.	-49.	-207.	Est	85. 354.
[C ₆ H ₁₈ OSi ₂] ((CH ₃) ₃ Si) ₂ O RN 107-46-0	~203	~849	-185.	-777.(6)	[77PED/RYL]	-2396.
[C ₆ MoO ₆] (CO) ₆ Mo RN 13939-06-5	185**	774**	-219.	-916.(2)	[77PED/RYL]	-38160.
C ₆ O ₆ V] (CO) ₆ V RN 20644-87-5	194.5*	* 814.**	-204.)[67BID/MCI]	-33. -138.
(C ₆ O ₆ W) (CO) ₆ W RN 14040-11-0	184**	770**	-211.	-883. (3)	[77PED/RYL]	-29123.
C_C1H50] 4-C1C6H4CHO RN 104-88-1	200.2	838.	-16.	-69.	Est	149. 623.
C_CCH10N] 3-Chloro-1-azabicyclo[2.2.2] oct-2-ene RN xxxxx	- 224.0*	* 937.**		104.(10		166.5 697.
C ₇ ClH ₁₂ N] 3-Chloro-1-azabicyclo[2.2.2] octane RN 42332-45-6	- 225.8*	* 945 . **	-10.5	-44.	Est	129. 541.
C ₇ C1H ₁₄ N] c-C ₅ H ₉ N,2-CH ₂ C1,1-CH ₃ RN 49665-74-9	227.6*	* 952.**	-23.	-97.	Est	115. 481.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton Affin	nity	$\Delta_{\mathbf{f}^{H}}$ (M)		Reference	∆ _± н (мн ⁺)	
	kcal/mol kJ/	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
С-COH ₅ O ₂] (C ₅ H ₅)Co(CO) ₂ RN 12078-25-0	~204**	853**					
C7CrH5NO3] (C5H5)Cr(CO)2NO RN 36312-04-	-6 196.9**	824.**					
[C ₇ D ₃ H ₅] C ₆ H ₅ CD ₃ RN 1124-18-1	189.8	794.	12.	50.(1)	[77PED/RYL]	188.	786.
. C ₇ FH ₅ O] 4-FC ₆ H ₄ CHO RN 459-57-4	199.2	833.	-56.	-235.	Est	110.	462.
[C ₇ FH ₅ O] 3-FC ₆ H ₄ CHO RN 456-48-4	196.4	822.	-56.	-236.	Est	113.	472.
[C ₇ FH ₆] 3-FC ₆ H ₄ CH ₂ radical RN xxxxx	~200	~837					
[C ₇ FH ₇] 3-FC ₆ H ₄ CH ₃ RN 352-70-5	189.3	792.	-36.	-150.	Est	140.	587.
[C ₇ FH ₇] 2-FC ₆ H ₄ CH ₃ RN 95-52-3	186.6	781.	-36.	-149.	Est	143.	600.
[C ₇ FH ₇] 4-FC ₆ H ₄ CH ₃ RN 352-32-9	185.8	777.	-35.	-148.(1)	[77PED/RYL]	144.5	605.
[C ₇ FH ₁₂ N] 3-Fluoro-l-azabicyclo[3.2.1]- octane RN xxxxx	228.1**	954.**	22.	94.	Est	160.	670.
[C ₇ F ₂ H ₁₁ N] 3,3-Difluoro-l-azabicyclo- [2.2.2]octane RN xxxxx	221.8**	928.**	* -101.	-423.	Est	43.	179.
[C ₇ F ₃ H ₆ N] 3-CF ₃ C ₆ H ₄ NH ₂ RN 98-16-8	204.2	854.	-142.	-595.	Est	19.	81.
[C ₇ H ₅ N] C ₆ H ₅ CN RN 100-47-0	195.9	820.	52.	219.	[82CHU/NGU]	222.	929.
$[C_7H_5O_2Rh]$ $(C_5H_5)Rh(CO)_2$ RN 12192-97-1	212**	887.**	*				
[C ₇ H ₆ N ₂] m-NCC ₆ H ₄ NH ₂ RN 2237-30-1	200.7	840.	53.	222.	Est	218.	912.
[C ₇ H ₆ O] 4-Methylene-2,5-cyclohexadiene- l-one RN 502-87-4	~222	~929	10.	40.(4)	Est	153.	641.
[C ₇ H ₆ O] 2,4,6-Cycloheptatriene-1-one RN 539-80-0	219	918	10.5	44.(3)	[77PED/RYL]	157.	656.
[C ₇ H ₆ O] C ₆ H ₅ CHO RN 100-52-7	200.2	838.	-9.	-37. (2)	[77PED/RYL]	157.	655.
[C ₇ H ₆ O ₂] С ₆ H ₅ COOH RN 65-85-0	198.2	829.	-70.	-294.(2)	[77PED/RYL]	97.	407.
[C ₇ H ₇] c-C ₇ H ₇ radical RN 3551-27-7	199.4	834.	65.	271.(8)	[82MCM/GOL]	227.	951.
[C ₇ H ₇] C ₆ H ₅ CH ₂ RN 2154-56-5	199.1	833.	49.	204.	[81TSA]	215.	901.
[C7H7N] 3,4-Cyclobutenopyridine RN xxxx	x 225.9**	945.*	* 60 .	252.	Est	200.	837.
[C7H7N] 2,3-Cyclobutenopyridine RN xxxx	x 223.3**	934.*	* 60.	250.	Est	202.	846.
[C7H7N] 4-Vinylpyridine RN 100-43-6	223.2**	934.*	* 48.	202.	Est	191.	798.
[C ₇ H ₇ NO] 1-(4-Pyridinyl)-ethanone RN 1122-54-9	217.4	910.	-6.	-26.	Est	142.	594.
[C ₇ H ₇ NO] 1-(3-Pyridinyl)-ethanone RN 350-03-8	217.2	909.	-6.	-26.	Est	142.	595.
[C ₇ H ₈] C ₆ H ₅ CH ₃ RN 108-88-3	189.8	794.	12.	50.(1)	[77PED/RYL]	188.	786.
[C7H80] C6H50CH3 RN 100-66-3	200.3	838.	-16.	-68.(1)	[77PED/RYL]	149.	624.
[C7H9N] 2,3-Dimethylpyridine RN 583-61-	9 226.2	946.	16.	68.(1)	[77PED/RYL]	156.	652.
[C7H9N] 2,4-Dimethylpyridine RN 108-47-	4 227.3	951.	15.	64.(2)	[77PED/RYL]	153.	643.
[C ₇ H ₀ N] 2,5-Dimethylpyridine RN 589-93-	5 226.2	946.	16.	67.(1)	[77PED/RYL]	155.5	651.

Table 2. Proton attinities and heats of formation of molecules and corresponding protonated species--Continued

rmula Compound (M)		Proton Affinity		$\Delta_{\mathbf{f}}^{H(M)}$		Reference	Δ _f н(мн ⁺)	
	kca	ıl/mol kJ,	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C7H9N] 2,6-Dimethylpyrid	dine RN 108-48-5	228.2	955.	14.	59. (2)	[TPED/RYL]	152.	634.
C ₇ H ₉ N] 3,4-Dimethylpyrid	dine RN 583-58-4	226.0	946.	17.	70.(1)	[77PED/RYL]	157.	654.
C ₇ H ₉ N] 3,5-Dimethylpyrid	dine RN 591-22-0	225.5	943.	17.	73.(1)	[77PED/RYL]	158.	661.
C ₇ H ₉ N] 2-Ethylpyridine	RN 100-71-0	226.2	946.	19.	81.	Est	159.	665.
C ₇ H ₉ N] 3-Ethylpyridine	RN 536-78-7	223.9	937.	20.5	86.	Est	162.	679.
C ₇ H ₉ N] 4-Ethylpyridine	RN 536-75-4	224.6**	940.**	20.	83.	Est	161.	672.
С ₇ Н ₉ N] С ₆ Н ₅ N/ICH ₃ RN 100	0-61-8	218.1	912.5	20.	85.	[78COL/BEN]	168.	702.5
C7H9N] C6H5CH2NH2 RN 10	00-46-9	216.8	907.	20.	84. (3)	[77CAR/LAY]	169.	707.
C7H9N] 4-CH3C6H4NH2 RN]	106-49-0	213.7	894.	14.	59.	Est	166.	695.
С ₇ H ₉ N] 3-СH ₃ С ₆ H ₄ NH ₂ RN	108-44-1	213.4	893.	13.	54.(2)	Est	165.	691.
C ₇ H ₉ NO] Pyridine-2-metho RN 23579-92-2	oxymethyl	226.0**	945.5*	* -5.	-22.	Est	134.	562.5
С ₇ н ₉ NO] 3-Сн ₃ ОС ₆ н ₄ NН ₂ н	RN 536-90-3	217.6	910.	-16.	- 67.	Est	132.	553.
С ₇ H ₉ NO] 2-CH ₃ OC ₆ H ₄ NH ₂ (0 RN 90-04-0	o-Anisidine)	214.7	898.	-14.	-57.	Est	137.	575.
С ₇ н ₉ NO] 4-Сн ₃ ОС ₆ н ₄ NH ₂	RN 104-94-9	214.3	897.	-14.	-58.	Est	137.5	.575.
C7H9NS] 3-CH3SC6H4NH2	RN 1783-81-9	214.5	897.	24.	102.	Est	175.5	735.
C ₇ H ₁₀] Bicyclo[2.2.1]he	ept-2-ene	200.4	838.	21.5	90.(4)	[80ROG/CHO]	187.	782.
C ₇ H ₁₀ N ₂] N,N-Dimethyl-2- RN 5683-33-0	-pyridinamine	229.2	959.	31.5	132.	[84BIC/PIL]	168.	703.
$^{ m C_7H_{10}N_2}$] N,N-Dimethyl-:	3-pyridinamine	229.9**	962.**	38.	158.	[84BIC/PIL]	174.	726.
C ₇ H ₁₀ N ₂] N,N-Dimethyl-RN 1122-58-3		236.2	988.	34.	144.	[84DIC/PIL]		686.
, 10 552	RN 1121-37-5	210.7	881.5	39.	163.	Est	194.	811.5
C ₇ H ₁₁ N] l-Azabicyclo[2.] RN 13929-94-7	2.2]oct-2-ene	228.5**	956.**	37.	156.	Est	174.5	730.
C ₇ H ₁₁ NO] 1-Azabicyclo[2 RN 3731-38-2	.2.2]octan-3-one	221.9**	928.**	-28.	-116.	Est	116.	486.
$[C_7H_{12}]$ (CH ₃) $_2C$ =CHC (CH ₃)	=CH ₂ RN xxxxx	213.1**	892.	4.	17.	[79AUE/BOW]	157.	655.
C ₇ H ₁₂] 1-Methylcyclohex	ene RN 591-49-1	198.8	832.	-10.	-43.(1)	[77PED/RYL]	157.	655.
[C ₇ H ₁₂] c-C ₅ H ₆ -1,2-(CH ₃)	2 RN 765-47-9	198.1	829.	-10.	-41.	[82ALL/DOD]	158.	660.
[C ₇ H ₁₃ N] 1-Azabicyclo[2. (Quinuclidine) RN 10	2.2]octane 0-76-5	232.1	971.	-1.	-4.(1)	[77PED/RYL]	132.6	555.
[C ₇ H ₁₃ N] Bicyclo[2.2.1]h exo (2-Aminonorbornan		221.7**	927.**	-8.	-32.(1)	Est	136.	570.
[C ₇ H ₁₃ N] Bicyclo[2.2.1]h endo (2-Aminonorborna	eptan-2-amine, ne) RN 31002-73-0	221.7**	927.*	-7.	-28.(1)	Est	137.	574.
[C7H14] (CH3)2C=CHCH(CH3) ₂ RN xxxxx	196.1	820.	-20.	-84.(1)	[77PED/RYL]	149.5	626.
	bicyclo[2.2.2.]	231.8**	970_*	4 4.	17.	Est	138.	577.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

Formula Compound (M)	Proton Affi	nity	∆ _f H (M)		Reference	∆ _f H (M	1 ⁺)
	kcal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
[C7H140] (i-C3H7)2CO RN 565-80-0	204.9	857.	-74.	-311.(1)	[77PED/RYL]	87.	363.
$[C_7H_{15}N]$ (CH ₃) $_2NC$ (C $_2H_5$) =CHCH $_3$ RN 78733-73-0	236.4	989.	-2.	-10.	Est	127.	531.
[C7H160] (i-C3H/)0(t-C4H9) RN 17348-59-	3 208.8**	874.**	-81.	-339.	Est	76.	317.
$[C_7^H_{16}^O_2]CH_3^O(CH_2)_5^{OCH_3}$ RN 111-89-7	221.8	928.	-104.	-436.	Est	40.	167.
$[C_7H_{17}N]$ $(C_2H_5)_2(n-C_3H_7)N$ RN 4458-31-5	232.0**	971.**	-27.	-114.	Est	106.	445.
$[C_7H_{17}N]$ $(CH_3)_2$ (neo- C_5H_{11}) N RN 10076-3	1-0 229.9	962.	-28.	-118.	Est	107.5	450.
[C ₇ H ₁₇ N] n-C ₇ H ₁₅ NH ₂ RN 111-68-2	219.0	916.	-36.	-151.	Est	111.	463.
$[C_7H_{18}N_2]$ (CH ₃) ₂ N(CH ₂) ₃ N(CH ₃) ₂ RN 110-9	5-2 238.8	999.	-7.	-29.	Est	120.	502.
[C ₇ H ₁₈ N ₂] 1,7-Diaminoheptane RN 646-19	-5 238.	996.	-27.	-115.	Est	100.	419.
$ \begin{array}{ll} \text{[C$_7$H$_19$NSi]} & \text{(C$_4$_3$)}_3\text{Si} \text{(C$_4$_2$)}_2\text{N(C$_4$_3$)}_2 \\ \text{RN 23138-94-5} & \end{array} $	231.8	970.	-54.	-228.	Est	79.	332.
[C ₈ F ₃ H ₅ O] p-CF ₃ C ₆ H ₄ CHO RN 455-19-6	191.0	799.	-172.	-721.	Est	2.	10.
[C ₈ FeH ₈ O ₂] (C ₅ H ₅)Fe(∞) ₂ CH ₃ RN 12080-0	190.6**	797.**	•				
[C ₈ H ₅ NO] 4-(CN)C ₆ H ₄ CHO RN 105-07-7	187.0	782.	25.5	107.	Est	204.	855.
[C ₈ H ₆ N ₂] Cinnoline RN 253-66-7	223.2	934.	81.	338.(10) Est	223.	934.
[C ₈ H ₆ N ₂] Quinoxaline RN 91-19-0	214.4	897.	63.	262.(4)	[81STE/BAR]	214.	895.
[C ₈ H ₈] C ₆ H ₅ CH=CH ₂ RN 100-42-5	202.0	845.	35.	148.(1)	[77PED/RYL]	199.	833.
[C ₈ H ₈] 1,2-C ₆ H ₄ (=CH ₂) ₂ RN xxxxx	214.8	899.	55.	230.(17)[81POL/RAI]	206.	861.
$[C_8H_8]$ 1,4- C_6H_4 (= CH_2) ₂ RN xxxxx	215.7	902.	56.	234.(17)[81POL/RAI]	207.	865.
[С ₈ н ₈ 0] С ₆ н ₅ СОСН ₃ RN 98-86-2	205.4	859.	-21.	-87.(2)	[77PED/RYL]	140.	584.
[C ₈ H ₈ O] 4-(CH ₃)C ₆ H ₄ CHO RN 104-87-0	203.7	852.	-18.	- 75.	Est	144.	603.
$[C_8H_8O_2]$ 4- $CH_3OC_6H_4CHO$ RN 123-11-5	213.5	893.	-48.5	-203.(5)	[77PED/RYL]	104.	434.
[C ₈ H ₈ O ₂] C ₆ H ₅ CO ₂ CH ₃ RN 95-58-3	203.7	852.	-69.	-288.(7)	[77PED/RYL]	93.	390.
[C ₈ H ₉] C ₆ H ₅ CHCH ₃ radical RN xxxxx	~201	~841	44.	184.	[82MAU]	209.	875.
[C ₈ H ₉ N] 3,4-Cyclopentenopyridine RN xxx	xxx 226.8**	949.**	* 27.	113.	Est	166.	695.
[C ₈ H ₉ N] 2,3-Cyclopentenopyridine RN xxx	xxx 225.8**	945.**	* 27.	111.	Est	166.	696.
[C ₈ H ₁₀] m-Xylene RN 108-38-3	195.9	820.	4.	17.(1)	[77PED/RYL]	174.	727.
[C ₈ H ₁₀] o-Xylene RN 95-47-6	193.3	809.	4.	18.(1)	[77PED/RYL]	177.	739.
[C ₈ H ₁₀] p-Xylene RN 106-42-3	192.0	803.	4.	18.(1)	[77PED/RYL]	178.	745.
[C ₈ H ₁₀] C ₂ H ₅ C ₆ H ₅ RN 100-41-4	191.6	802.	7.	29.(1)	[77PED/RYL]	181.	757.
[C ₈ H ₁₁ N] 2-Isopropylpyridine RN 75981-4	47-4 227.2	951.	13.	56.	Est	152.	635.
[C ₈ H ₁₁ N] C ₆ H ₅ N(CH ₃) ₂ RN 121-69-7	223.4	935.	24.	101.(3)	[82FUR/SAK]	166.	696.
[C ₈ H ₁₁ N] C ₆ H ₅ NHC ₂ H ₅ RN 103-69-5	221.8	928.	13.	56.(6)	[69BEN/CRU]	157.	658.
[C ₈ H ₁₁ N] 3-C ₂ H ₅ C ₆ H ₄ NH ₂ RN 587-02-0	214.0	895.	6.	27.	Est	158.	662.
[C ₈ H ₁₁ P] C ₆ H ₅ P(CH ₃) ₂ RN 672-66-2	229.6	961.	19.5		Est	156.	651.
[C ₈ H ₁₂] (c-C ₃ H ₅) ₂ C=CH ₂ RN 822-93-5	216.5	906.	51.	213.	[70BEN/0`N]		837.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

Formula	Compound (M) Pro	oton Affir	nity	∆ _£ H (M))	Reference	∆ _£ H (M	H ^T)
	kca	nl/mol kJ	/mol k	cal/mol	kJ/mol		kcal/mol	kJ/mol
(C ₈ H ₁₂) 2 RN 497-	2-Methylenebicyclo[2.2.1]heptane -35-8	207**	866**	12.	50.	[79AUE/BOW]	171.	714.
(C ₈ H ₁₂) 2	?-Methylbicyclo[2.2.1]hept-2-ene	206	862	11.	46.	Est	171.	714.
0 15	1-Azabicyclo[2.2.2]- ene,3-methyl RN xxxxx	231.0**	966.5**	30.	124.	Est	164.	687.5
	1-Azabicyclo[2.2.2]- ,3-methylene RN 22207-84-7	230.1**	963.**	20.	84.	Est	156.	651.
v	(CH ₃) ₂ C=C (CH ₃) C (CH ₃) =CH ₂ xxxxx	210.6**	881.**	-3.	-13.	[79AUE/BOW]	152.	636.
(C ₈ H ₁₄ O)	c-C ₆ H ₁₁ COCH ₃ RN 823-76-7	202.4	847.	-65.	-273.	Est	98.	410.
(C ₈ H ₁₄ O ₂)	c-C ₆ H ₁₁ COOCH ₃ RN 4630-82-4	203.7	852.	-111.	-466.	Est	51.	212.
	3-Methyl-l-azabicyclo{2.2.2.}- RN-695-88-5	231.7**	969.**	-8.	-33.	Est	126.	528.
	1,4,4-Trimethyl-1,2,3,4-tetra- ridine RN 35079-50-6	234.2**	980.**					
	cis-3-Aminobicyclo(2.2.2)octan- RN 17997-65-8	223.9	937.	- 57 .	-240.	Est	84.	353.
0 10] trans-3-Aminobicyclo[2.2.2]- 2-ol RN 40335-14-6	220.6	923.	-59.0	-248.	Est	86.	359.
] 1,4,7,10-Tetraoxa- odecane (12-Crown-4) RN 294-93-9	221.6	927.	-151.	-631.	[82BYS/MAN]	-7.	-29.
[C ₈ H ₁₇ N]	1,4,4-Trimethylpiperidine RN 1003	-84-5 230	.8** 9	66.**				
[C ₈ H ₁₈ O]	(n-C ₄ H ₉) ₂ O RN 142-96-1	203.7	852.	-79.5	-333.(1)	[*80MAJ/WAG	3 82.	345.
[C ₈ H ₁₈ O]	(sec-C ₄ H ₉) ₂ O RN 6863-58-7	209.0	874.	-88.	-370. (2)	[77PED/RYL]	68.	286.
[C ₈ H ₁₈ O]	(t-C ₄ H ₉) ₂ O See References to Tab	le 1: 75P	IT/BUR					
[C ₈ H ₁₈ O ₄	CH ₃ (OCH ₂ CH ₂) ₃ OCH ₃ RN 112-49-2	224.1	938.	-157.	-656.	Est	-15.	-64.
[C ₈ H ₁₈ S]	(t-C ₄ H ₉) ₂ S RN 107-47-1	212.8	890.	-45.	-189.(1)	[77PED/RYL]	108.	451.
[C ₈ H ₁₈ S]	(n-C ₄ H ₉) ₂ S RN 544-40-1	208.7	873.	-40.	-167.(1)	[77PED/RYL]	117.	490.
[C ₈ H ₁₉ N]	(i-C ₃ H ₇) ₂ (C ₂ H ₅)N RN 7087-68-5	235.3	984.	-33.	-140.	Est	97.	405.5
[C ₈ H ₁₉ N]	(t-C ₄ H ₉) ₂ NH RN 21981-37-3	233.2	976.	-41.	-172. (3)	[81SUR/HAC]	91.	382.
[C ₈ H ₁₉ N]	(sec-C ₄ H ₉) ₂ NH RN 626-23-3	231.8	970.	-37.5	-157.	Est	96.	403.
	(СН ₃) ₃ С (СН ₂) ₂ N (СН ₃) ₂ -73-04-8	230.4	964.	-36.	-149.(3)	Est	100.	417.
(C ₈ H ₁₉ N)	(i-C ₄ H ₉) ₂ NH RN 110-96-3	228.6	956.	-43.	-179.(8)	[73PEP/GAF]	94.	395.
[C ₈ H ₁₉ N]	(n-C ₄ H ₉) ₂ NH RN 111-92-2	228.4	956.	-37.5	-157.(1)	[77PED/RYL]	100.	417.
	n-(C ₈ H ₁₇)NH ₂ RN 111-86-4	220.4**	922.**	-41.	-172.	Est	104.	436.
	.] (CH ₃) ₂ N(CH ₂) ₄ N(CH ₃) ₂ RN 111-51-3	240.4	1006.	-12.	-51. (1)	Est	113.	473.
[C ₈ H ₂₁ NS	Si] (CH ₃) ₃ Si (CH ₂) ₃ N(CH ₃) ₂ 147-29-2	231.8	970.	-59.	-248.	Est	75.	312.
	Si] (CH ₃) ₂ (t-C ₄ H ₉)SiN(CH ₃) ₂ 65-05-7	229.7	961.	-68.	-286. (2:	3) Est	68.	283.
[C ₈ H ₂₂ OS	Si ₂] ((CH ₃) ₃ SiCH ₂) ₂ O See Reference	s to Tab	le 1: 75	SPIT/BUR				
	4-ClC ₆ H ₄ C(CH ₃)=CH ₂ RN 1712-70-5	205.0	858.	19.	81.	Est	180.	753.
, ,	O ₃] (C ₅ H ₅)Cr (CO) ₃ CH ₃ RN 41311-89-1	206**	862**					

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

ormula Compound (M)	Proton Affin	nity	∆ _f H(M)	st i li	Reference	Δ _£ н (мн ⁺)	
	kcal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₉ H ₇ MnO ₃] (CH ₃ C ₅ H ₄)Mn(CO) ₃ RN 12108-1:	3-3 200.6**	839.**	-121.	-508.	Est	44.	183.
C ₉ H ₇ N] Quinoline RN 91-22-5	226.5	948.	50.	211.(1)	[79VIS]	190.	793.
C ₉ H ₇ N] Isoquinoline RN 119-65-3	225.9	945.	50.	208 . (1)	[79VIS/WIL]	190.	793.
C ₉ H ₇ NO] Quinoline-1-oxide RN 1613-37-2	224.6	940.	31.	131.	Est	172.	721.
C ₉ H ₉ N] (HCCCH ₂) ₃ N RN 6921-29-5	220.2	921.	174.	727.	Est	319.	1336.
C ₉ H ₁₀] C ₆ H ₅ C (CH ₃)=CH ₂ RN 98-83-9	207.0	866.	27.	113.	[69BEN/CRU]	186.	777.
C ₉ H ₁₀ O] (4-CH ₃)C ₆ H ₄ COCH ₃ RN xxxxx	208.7	873.	.29.	-120.	Est	128.	535.
C ₉ H ₁₁] C ₆ H ₅ C(CH ₃) ₂ radical RN xxxxx	202.4	847.	33.	139.	[82MCM/GOL]	202.	846.
C ₉ H ₁₁] C ₆ H ₅ (CHC ₂ H ₅) radical RN xxxxx	~202	~845	39	164	[82MAU]	203.	849.
C ₉ H ₁₁ N] 2,3-Cyclohexenopyridine RN 10500-57-9	227.7**	953.**	* 18 .	74.	Est	156.	651.
C ₉ H ₁₁ N] 3,4-Cyclohexenopyridine RN 36566-06-6	227.7**	953.*	* 18.	76.	Est	156.	653.
$(C_9H_{11}NO_2)$ $C_6H_5CH_2CH$ (NH_2) COOH $(L-Phenylalanine)$ RN 150-30-1	216.5	906.	- 75.	-313.(1)	[77 <u>PED/RY</u> L]	74.	311.
[C ₉ H ₁₁ NO ₃] L-Tyrosine RN xxxxx	222.3	930.	-116.	-486.	Est	27.	114.
(C ₉ H ₁₂) Mesitylene RN 108-67-8	200.7	840.	-4.	-16.(1)	[77PED/RYL]	161.	674.
[C ₉ H ₁₂] n-C ₃ H ₇ C ₆ H ₅ RN 103-65-1	192.4	805.	2.	8.(1)	[77PED/RYL]	175.	733.
[C ₉ H ₁₂] i-C ₃ H ₇ C ₆ H ₅ RN 98-82-8	192.1	804.	1.	4.(1)	[77PED/RYL]	174.5	730.
[C ₉ H ₁₂ N ₂ O ₆] Uridine RN 58-96-8	~208	~870	-223.	-935.	Est	-66.	-275.
[C ₉ H ₁₂ O ₃] 1,3,5-C ₆ H ₃ (OCH ₃) ₃ RN 621-23-8	220.6	923.	-90.5	-379.	Est	54.5	228.
[C ₉ H ₁₃ N] 2,6-Diethylpyridine RN 935-28	-4 231.1	967.	4.5	19. (2)	Est	139.	582.
[C ₉ H ₁₃ N] C ₆ H ₅ CH ₂ N(CH ₃) ₂ RN 103-83-3	228.1**	954.*	* 20.	84.	Est	158.	660.
$[C_9H_{13}N]$ $C_6H_5N(CH_3)$ (C_2H_5) RN 613-97-8	227.1	950.	17.	71.	Est	156.	651.
[C ₉ H ₁₃ N] 2-t-Butylpyridine RN 5944-41-	2 227.4**	951.*	* 7.	28.	Est	145.	607.
[C ₉ H ₁₃ N] 4-t-Butylpyridine RN 3978-81-	2 225.9	945.	8.	32.	Est	147.	617.
[C ₉ H ₁₃ N] 3-CH ₃ C ₆ H ₄ N(CH ₃) ₂ RN 121-72-2	224.5	939.	16.	67.	Est	157.	658.
[C ₉ H ₁₃ N] 4-CH ₃ C ₆ H ₄ N(CH ₃) ₂ RN 99-97-8	225.6	944.	17.	70.	Est	157.	656.
[C ₉ H ₁₄ N ₂ O ₆] 5,6-Dihydrouridine RN 5627-05-4	~208	~870	-233.5	- 977 .	Est	-76.	-317.
[C ₉ H ₁₅ N] (CH ₂ =CHCH ₂) ₃ N RN 102-70-5 [C ₉ H ₁₇ N] 1-Cyclopentylpyrrolidine RN 18	230.0 707-33-0 233	962. 3.1**	53.5 975.**	224.	Est.	189.	792.
$[C_9H_{17}N]$ c- $C_5H_{10}NCH$ =C (CH ₃) ₂ RN 673-33-6	230.7**	965.*	* -7.	-31.	Est	127.5	534.
[C ₉ H ₁₇ NO ₂] 3,3-Dimethoxy- -1-azabicyclo[2.2.2]octane RN xxxxx	232**	971**	-78.	-326.	Est	56.	233.
[C ₉ H ₁₈ O] (tert-C ₄ H ₉) ₂ CO RN 815-24-	7 206.5	864.	-83.	-345.8	[77PED/RYL]	77.	320.
[C ₉ H ₁₈ N ₂] 1,5-Diazabicyclo[3.3.3]- undecane RN 283-58-9	232.4	972.	33.	138.	[81ALD/ARR]	166.	696.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species—Continued

Formula Compound (M)	Proton Affi	nity	Δ_{f} H (M)	·	Reference	Δ_{f} H (MH $^+$)	
1	kcal/mol kJ	/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₉ H ₁₉ N] 2,2,6,6,-Tetramethyl- piperidine RN 768-66-1	231.7**	969.**	-38.	-160. (3)	[81SUR/HAC]	96.	401.
$[C_9H_{19}N]$ N-Isobutylpiperidine RN 10315-8	9-6 232.9**	974.**	•				
[C ₉ H ₂₁ N] (t-C ₄ H ₉)C(CH ₃) ₂ N(CH ₃) ₂ RN 3733-36-6	235.1	984.	-34.	-142.	Est	97.	404.
$[C_9H_{21}N]$ (n- C_3H_7) 3N RN 102-69-2	234.0	979.	-38.	-161.	Est	93.	390.
C ₉ H ₂₁ N] (t-C ₅ H ₁₁)(t-C ₄ H ₉)NH RN 58471-09-3	232.5	973.	-46.	-191.(4)	Est	87.5	366.
$[C_{10}ClH_{14}N]$ 4-ClC ₆ H ₄ N(C ₂ H ₅) ₂ RN 2873-89	-4 225.6	944.	2.	8.	Est	142.	594.
[C ₁₀ CrH ₇ O ₃] (C ₆ H ₅ CH ₂)Cr(CO) ₃ RN 32984-97	- 7 205**	858**					
[C ₁₀ F ₃ H ₉] 4-CF ₃ C ₆ H ₄ C(CH ₃)CH ₂ RN 55186-75-9	199.6	835.	-131.	-549.	Est	35.	146.
[C ₁₀ FeH ₁₀] (C ₅ H ₅) ₂ Fe RN 102-54-5	~210	~879.	58.	242. (3)	[77PED/RYL]	213.5	893.
[C ₁₀ H ₈] Azulene RN 275-51-4	220.	921.	69.	289. (3)	[77PED/RYL]	215.	898.
[C ₁₀ H ₈] Naphthalene RN 91-20-3	194.7	815.	36.	150.(1)	[*82COL/JIM	207.	865.
[C ₁₀ H ₉ N] 1-Naphthalenamine RN 134-32-7	216.9	907.5	38.	158.(7)	[77PED/RYL]	186.5	780.5
[C ₁₀ H ₁₀ N ₂] 1,8-Diaminonaphthalene RN 479-27-6	223.8	936.	46.	193.	Est	188.	787.
[C ₁₀ H ₁₀ Ni] (C ₅ H ₅) ₂ Ni RN 1271-28-9	223.	933.	85.	357. (5)	[77PED/RYL]	228.	954.
[C ₁₀ H ₁₀ Ru] (C ₅ H ₅) ₂ Ru RN 1287-13-4	218**	912**	-62.	-260.	Est	85.5	358.
$[\mathrm{C}_{10}\mathrm{H}_{12}]$ 1,2,3,4-tetrahydronaphthalene RN 119-64-2	194.7	815.	6.	24. (2)	[77PED/RYL]	177.	739.5
$[C_{10}H_{12}]$ 4-CH ₃ C ₆ H ₄ C(CH ₃)CH ₂ RN 1195-32	-0 211.0	883.	19.	80.	Est	174.	727.
$[C_{10}H_{12}O]$ 4- $CH_3OC_6H_4C$ (CH_3) CH_2 RN 1712-69	-2 217.4	910.	-23.	-95.	Est	125.5	525.
[C ₁₀ H ₁₃ N] N-Phenylpyrrolidine RN 4096-21	-3 224.7	940.	30.	117.	Est	171.	716.
[C ₁₀ H ₁₄] t-C ₄ H ₉ C ₆ H ₅ RN 98-06-6	193.0	807.	-5.	-23.(1)	[77PED/RYL]	167.	699.5
$[C_{10}H_{14}]$ n- $C_4H_9C_6H_5$ RN 104-51-8	192.1	804.	-3.	-13.(1)	[77PED/RYL]	170.	713.
$[C_{10}H_{14}N_2O_5]$ Thymidine RN 50-89-5	~208	~870	-230.	-961.	Est	-72.	-301.
$[C_{10}H_{15}N] C_6H_5N(C_2H_5)_2$ RN 91-66-7	227.6	952.	9.5	40.	[69BEN/CRU]	148.	617.
[C ₁₀ H ₁₅ N] 3,5-(CH ₃) ₂ C ₆ H ₃ N(CH ₃) ₂ RN 4913-13-7	227.0	950.	8.	35.	Est	147.	615.
$ \begin{array}{cccc} [\mathtt{C}_{10}\mathtt{H}_{16}] & \mathtt{1.5.5-Trimethyl-3-methylenecycl} \\ & \mathtt{hexene} & \mathtt{RN} & \mathtt{16609-28-2} \end{array} $	lo- 216.1*	* 904.*	* -2.	-8.	[79AUE/BOW]	148.	618.
$[C_{10}H_{16}N_2]$ 1.2- $(N(CH_3)_2)_2C_6H_4$ RN 704-01	-8 235 ₋ 2	984.	36.	151.	Est	167.	697.
[C ₁₀ H ₁₇ NO] cis-3-Amino-2-twistanol RN xxxxx	224.0	937.	-47.	-197.	Est	95.	396.
[C ₁₀ H ₁₇ NO] trans-3-Amino-2-twistanol RN xxxxx (isomer 1)	221.5	927.	-49.	-205.	Est	95.	398.
[C ₁₀ H ₁₇ NO] trans-3-Amino-2-twistanol RN xxxxx (isomer 2)	220.0	920.	-49.	-205.	Est	97.	405.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

Formula	Compound (M)	Proton 1	Affinity	, ∆ _f H(M	1)	Reference	∆ _f H (MI	· (* 1	
		kcal/mo	kJ/mol	kcal/mol	kJ/mol	·	kcal/mol	kJ/mol	
	l-Azabicyclo[3.3.3]undecane ne) RN 31023-92-4	230	.1 96	3. 5.	20. (20) Est	140.	587.	
[C ₁₀ H ₁₉ NC RN xxxx	o] 4-Aminodecahydro-3-naphthaloxx	enol 222	.1 929	-77 .	-321.	Est	67.	280.	
	[3] 1,4,7,10,13-Pentaoxacycloper (15-Crown-5) RN 33100-27-5	nta- 223	.6 930	-186.	-780.(2)	[82BYS/MAN]	-44.	-184.	
[C ₁₀ H ₂₂ O]	(n-C ₅ H ₁₁) ₂ 0 RN 693-65-2	205	2** 85	.** -90.	-375.	Est	71.	296.5	
[C ₁₀ H ₂₂ O ₅	3] CH ₃ (OCH ₂ CH ₂) ₄ OCH ₃ RN 143-24-	-8 227	.2 95	L . .					
[C ₁₀ H ₂₃ N]	n-(C ₁₀ H ₂₁)NH ₂ RN 2016-57-1	220	.7** 92	3.** -51.	-214.	Est	94.	393.	
[C ₁₀ H ₂₄ N ₂ RN 111-1	₂] (CH ₃) ₂ N(CH ₂) ₆ N(CH ₃) ₂ 8-2	237	.9 99	5. –22.	-91.	Est	106.	444.	
$[C_{11}H_{10}]$	1-Methylnaphthalene RN 90-12-0	200	.7 84	27.	113. (2)	[74SAB/CHA]	192.	803.	
$[C_{11}H_{10}]$	2-Methylnaphthalene RN 91-57-	6 200	.0 83	7. 26.5	5 111.(2)	[74SAB/CHA]	192.	804.	
[C ₁₁ H ₁₂ N ₂	02] L-Tryptophan RN 54-12-6	225	.4 94	358.	-243.	Est	82.	344.	
[C ₁₁ H ₁₃ N] RN 4363	1,4-Dihydro-1,4-ethanoquinol 3-25-1	ine 232	•0 97	41.	173.	Est	175.	732.	
[C ₁₁ H ₁₅ N]	1-Phenylpiperidine RN 4096	-2-2 225	.8 94	5. 14.	57.	Est	154.	642.	
[C ₁₁ H ₁₇ N] RN 6832	2,6-Diisopropylpyridine 2-21-9	232	.9 97	48.	-33.	Est	125.	523.	
[C ₁₁ H ₁₇ N]	2-C ₆ H ₁₃ (c-C ₅ H ₄ N) RN 1129-69-	7 228	.9 95	3. 0.	0.	Est	137.	572.	
[C ₁₁ H ₁₇ N]	3-CH ₃ C ₆ H ₄ N(C ₂ H ₅) ₂ RN 91-67-	8 228	.9 95	5. 1.	4.	Est	138.	578.	
[C ₁₁ H ₁₇ N]	4-CH ₃ C ₆ H ₄ N(C ₂ H ₅) ₂ RN 613-48-	-9 228	.6 95	5. 3.	12.	Est	140.	587.	
[C ₁₂ H ₈] I	Biphenylene RN 259-79-0	203	.4 85	1. 104.	437.(13)[77PED/RYL]	267.	1116.	
	Phenazine RN 92-82-0	223	.7 93	5. 82.	344.(3)	[80ARS]	224.	938.	
[C ₁₂ H ₁₀]	Acenaphthene RN 83-32-9	203	.5 85	1. 37.	155.(1)	[81:KUD/KUD]	199.	834.	
	Biphenyl RN 92-52-4	196	.1 82	. 43.		[77PED/RYL]		892.	
12 17 2	N,N'-Dimethyl-1,8-naphthale RN 20734-56-9	ne- 230	.0 96	2. 45.	189.	Est	181.	757.	
[C ₁₂ H ₁₆ N ₂ RN 362-	20 ₆] 2',3'-0-Isopropylideneuri -43-6	dine ~208	~87	-218.	-911.	Est	-60.	-251.	
[C ₁₂ H ₁₈]	(CH ₃) ₆ C ₆ RN 87-85-4	207	.3 86	7. –21.	-87. (3)	[77PED/RYL]	138.	576.	
[C ₁₂ H ₁₉ N] RN 22025	C ₆ H ₄ N(CH ₃) ₂ ,2-t-C ₄ H ₉ 5-87-2	229	.3 95	9. 15.	63.	Est	151.5	634.	
[C ₁₂ H ₁₉ N]	C ₆ H ₅ N(C ₃ H ₇) ₂ RN 2217-07-4	228	.6 95	5. 1.	3.	Est	138.	578.	
	(CH ₂ =C (CH ₃) CH ₂) 3N RN XXXXX	230	.7** 96	5.** 28.	116.	Est	163.	684.	
[C ₁₂ H ₂₁ NC	D] 3-Amino-tricyclo[7.3.0.0 ^{4,8} n-2-ol RN xxxxx] 220	.0 92	o63.	-263.	Est	83.	347.	
12 27 2	2] 1,6-Diazabicyclo[4.4.4]- cane RN 71058-67-8	226	.0 94	5. –23.	- 95 .	[8lald/arr]	116.	489.5	
'	5] 1,4,7,10,13,16-Hexaoxa- ctadecane (18-Crown-6) RN 17	230 455–13–9	. 96	2. –227.	-950.	Est	- 91.	-382.	
[C ₁₂ H ₂₇ N]	(n-C ₄ H ₉) ₃ N RN 102-82-9	234	.8 98	2 . –53.	-222.(1)	Est	78.	326.	

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species—Continued

Tormula Con	mpound (M)	roton Aff	inity	Δ _f H (M)		Reference	$\Delta_{\mathbf{f}^{H}}$ (MH $^{+}$)	
		cal/mol k	J/mol	kcal/mol	kJ/mol		kcal/mol	kJ/mol
C ₁₃ H ₉ N] Acr	idine RN 260-94-6	231.9	970.	70.	291.(1)	[81KUD/KUD2]	203.	851.
C ₁₃ H ₁₀] Flu	orene RN 86-73-7	200.0	837.	45.	187.(1)	[81KUD/KUD]	210.	880.
с ₁₃ н ₁₀ 0] (с	6 ^H 5)2 ^{CO} RN 119-61-9	210.9	882.	12.	50.(3)	[78SAB/LAF2]] 167.	698.
C ₁₃ H ₁₃ P] (C	6H ₅) ₂ (CH ₃)P RN 1486-28-8	230.3	963.5	44.	185.	Est	180.	751.5
[C ₁₃ H ₁₆ N ₂] N lenediamine	,N,N'-Trimethyl-1,8-naphtha- RN 20723-57-0	235.6	986.	-52.	-217.	Est	78.	327.
[C ₁₃ H ₂₁ N] 2 RN 585-48-	,6-Di-t-butylpyridine 4	233.4	976.	-19.	-81.	Est	113.	472.5
[C ₁₃ H ₂₁ N] 2 RN 29939-3	,4- Di-t-butylpyridine 1-9	231.4*	* 968.**	-19.	-79 .	Est	115.	483.
[C ₁₃ H ₂₅ N] 2, RN xxxxx	6-Di-t-butylpiperidine	234.3	980.	-76.	-317.	Est	56.	233.
[C ₁₃ H ₂₅ N] ou tetradecan	t-6H-1-Azabicyclo[4.4.4] e RN xxxxx	214.3	896.	-11.	-47.	[81ALD/ARR]	140.	586.
[C ₁₄ H ₁₀] A	nthracene RN 120-12-7	207.0	866.	55.	230.(1)	[79KUD/KUD4] 214.	894.
[C ₁₄ H ₁₀] Phe	nanthrene RN 85-01-8	198.7	831.	49.	207.(1)	[79KUD/KUD4] 216.	906.
$[C_{14}H_{12}]$ (C_6	H ₅) ₂ C=CH ₂ RN 530-48-3	211.9	887.	59.	246.(4)	[77PED/RYL]	212.5	889.
[C ₁₄ H ₁₄] C ₆ H	5 (CH ₂) 2C ₆ H ₅ RN 103-29-7	194.6	814.	34.	143.(2)	[77PED/RYL]	205.	859.
	,3,4,5,6,7,8-Octahydro- e RN 5325-97-3	204.7	856.	-8.	-34.(8)	[77SHA/GOL]	153.	640.
11 10	,3,4,5,6,7,8-Octahydro- RN 1079-71-6	202.6	848.	-9.	-37.(3)	[77PED/RYL]	154.	645.
[C ₁₄ H ₁₈ N ₂] naphthalene	N,N,N',N'-Tetramethyl-1,8-diamine RN 20734-58-1	- 241.8	1012.	63.	262.	Est	186.5	780.
[C ₁₄ H ₂₇ N] 1 RN XXXXX	-Methyl-2,6-t-butylpiperidine	e 239.2	1001.	-67.	-311.	Est	60.	250.
[С ₁₅ н ₁₂] 9-м	ethylanthracene RN 779-02-2	213.9	895.	48.	201.	Est	200.	836.
[C ₁₅ H ₁₂] 2-M	ethylanthracene RN 613-12-7	210.3	880.	45.	187.	Est	200.	837.
[C ₁₅ H ₁₈] 1 RN 489-84-9	,4-Dimethyl-7-isopropylazuler	ne 233.	975.	33.	139.	Est	165.	694.
[C ₁₆ H ₁₀] Pyr	ene RN 129-00-0	206.1	862.	52.	216.(1)	[79KUD/KUD2] 211.	884.
[C ₁₆ H ₁₀] Flu	oranthene RN 206-44-0	199.3	834.	69.	289.(1)	[81KID/KID]	235.	985.
$[C_{16}H_{16}]$ (4-	$^{\text{CH}_3\text{C}_6\text{H}_4})_2^{\text{C=CH}_2}$ RN xxxxx	215.4	901.	43.	180.	Est	193.	809.
[С ₁₆ н ₁₈] С ₆ н	5 (CH ₂) 4C ₆ H ₅ RN 1083-56-3	195.9	820.	24.	100.	Est	194.	810.
[С ₁₈ н ₁₂] т	etracene RN 92-24-0	217.8	911.	67.	284.(1)	[79KUD/KUD2] 216.	903.
[C ₁₈ H ₁₂] Chr	ysene RN 218-01-9	201.6	843.	63.	263.(1)	[79KUD/KUD2] 227.	949.5
[C ₁₈ H ₁₂] Tri	phenylene RN 217-59-4	198.5	830.5	64.5	270.(1)	[79KUD/KUD2] 232.	969.5
[C ₁₈ H ₁₅ P] (C	6H ₅) ₃ P RN 603-35-0	~230.	~962.	78.	328. (21) [79STE]	214.	896.
[C ₂₀ H ₁₂] Per	ylene RN 198-55-0	211.4	884.	74.	308.(4)	[77PED/RYL]	228.	953.5

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continue.

Formula Compound (M)	Proton Affinity		Δ _f H (M)		Reference	Δ _ξ Η (MH ⁺)		
en e	kcal/mol kJ/mol		kcal/mol kJ/mol		n National Constant	kcal/mol	kcal/mol kJ/mol	
[C ₂₂ H ₁₂] 1,12-Benzoperylene RN 191-24-2	208.	872.	72.	302.	[77STE/GOL]	229.	960.	
[C ₂₂ H ₁₄] Picene RN 213-46-7	203.4	4 851.	78.	326.	Est	240.	1005.	
[C ₂₄ H ₁₂] Coronene RN 191-07-1	205.0	858.	77.	323.	[77STE/GOL]	238.	995.	
[C1] C1 RN 22537-15-1	123.0	6 517.	29.1	122.	[82/TN270]	271.8	1137.	
[C1H] HC1 RN 7647-01-0	134.	8 564.	-22.	-92.	[82/TN270]	209.	874.	
[F] F RN 14762-94-8	81.0	339.	19.	79.	[82/TN270]	>303.3	1270.	
[FH] HF RN 7664-39-3	117.	489.5	-65.	-271.	[82/TN270]	184.	770.	
[F ₂ O ₂ S] F ₂ SO ₂ RN 2699-79-8	159.0	665.	-181.	-759. (8)	[82JANAF]	25.	106.	
[F ₃ N] NF ₃ RN 7783-54-2	144	604	-30.	-125.	[82/TN270]	192.	802.5	
[F ₃ OP] OPF ₃ RN 13478-20-1	167.	8 702.	-289.	-1211.	[82/TN270]	-91.5	-383.	
[F ₃ P] PF ₃ RN 7783-55-3	166.	5 697.	-220.	-919.	[82/TN270]	-20.	-85.5	
[HI] HI RN 10034-85-2	150.	628.	6.	26.	[82/TN270]	222.	928.	
[HNO ₃] HNO ₃ See References to Table 1:	75FEH/H	OW						
[HO ₂] HO ₂ RN 3170-83-0	~158.	~ 661.	3.	11. (4)	[82BAU/COX]	210.	880.	
H ₂] H ₂ RN 1333-74-0	101.	3 424.	0.	0.	DEF	264.	1106.	
H ₂ O] H ₂ O RN 7732-18-5	166.	5 697.	-58.	-242.	[82/TN270]	141.	591.	
H ₂ O ₂] H ₂ O ₂ RN 7722-84-1	162.	678.	-32.5	-136.	[82BAU/COX]	171.	716.	
[H ₂ O ₄ S] H ₂ SO ₄ RN 7664-93-9	~169	~707	-176.	-735. (8)	[82JANAF]	21.	88.	
[H ₂ S] H ₂ S RN 7783-06-4	170.	2 712.	-5.	-21.	[82/TN270]	190.	797.	
[H ₂ Se] H ₂ Se RN 7783-07-5	171.	3 717.	7.	30.	[82/TN270]	201.5	843.	
[H ₂ N] NH ₂ RN 15194-15-7	187	782	44.	185. (5)	[82MCM/GOL]	223.	935.	
[H ₃ N] NH ₃ RN 7664-41-7	204.	0 853.5	-11.	-46.	[82/TN270]	151.	630.5	
[H ₃ P] PH ₃ RN 7803-51-2	188.	6 789.	1.	5.	[82/TN270]	178.	746.	
[H ₄ N ₂] H ₂ NNH ₂ RN 302-01-2	204.	7 856.	23.	95.	[82/TN270]	184.	770.	
[H ₄ Si] SiH ₄ RN 7803-62-5	~155	~648	8.	35.	[81BEL/PER]	219.	916.5	
[He] He RN 7440-59-7	42.	5 178.	.0.	i- 0.	DEF	323.	1352.	
[I] I RN 14362-44-8	145.	4 608.	25.5	107.	[82/TN270]	246.	1029	
[Kr] Kr RN 7439-90-9	101.	6 425.	0.	0.	DEF	264.	1105.	
[Mg] Mg See References to Table 1:	77PO/POR							
[Mg ₂] Mg ₂ RN 29904-79-8	~219	916.						
(NO) NO RN 10102-43-9	~127	~531	21.5	90.	[82BAU/COX]	260.	1089.	
[N ₂] N ₂ RN 7727-37-9	118.	2 494.5		0.	DEF	247.5	1035.5	
[N ₂ O] N ₂ O RN 10024-97-2	136.	5 571.	20.	82.	[82/TN270]	249.	1041.	
[Ne] Ne RN 7440-01-9	48.	1 201.	0.	0.	DEF	318.	1329.	

Proton Affinity $\Delta_{\epsilon} H (MH^{+})$ Compound (M) $\Delta_{f}H(M)$ Reference kcal/mol kJ/mol kcal/mol kJ/mol kcal/mol kJ/mol [O] O RN 17778-80-2 249. [82/TN270] 309. 1293. 116.3 487. 59.5 [OSi] SiO See References to Table 1: 81FAH/FEH [02] 02 RN 7782-44-7 100.9 422. 0. 0. DEF 265. 1108. [O₂S] SO₂ RN 7446-09-5 161.6 676. -71. -297. [82/TN270] 133. 557. [03S]SO3 RN 7446-11-9 ~577 ~138 -95. 133. 557. -396. [82/TN270] RN 7704-34-9 158.3 662. 67. 279. [82/TN270] 274. 1147. [Xe] Xe RN 7440-63-3 118.6 247. 1034. 496. 0. 0. [Zn] Zn RN 7440-66-6 156 653 31. 131. [82/TN270] 241. 1008.

Table 2. Proton affinities and heats of formation of molecules and corresponding protonated species--Continued

References to Table 2

A reference of the form *00ABC/DEF means that a condensed phase heat of formation from 77PED/RYL has been used with a heat of vaporization or sublimation from the designated reference.

- 81ALD/ARR R.W. Alder, R.J. Arrowsmith, A. Casson, R.B. Sessions, E. Heilbronner, B. Kovac, H. Huber and M. Taagepera, J. Am. Chem. Soc. 103, 6137 (1981).
- 82ALL/DOD N.L. Allinger, H. Dodziuk, D.W. Rogers and S.N. Naik, Tetrahedron 38, 1593 (1982).
- 83AN/MAN X.-W. An and M. Mansson, J. Chem. Thermodyn. 15, 587 (1983).
- 80ARS M.R. Arshadi, J. Chem. Thermodyn. 12, 903 (1980).
- 79AUE/BOW D.H. Aue and M.T. Bowers, "Stabilities of Positive Ions from Equilibrium Gas-Phase Basicity Measurements," in Gas Phase Ion Chemistry, M.T. Bowers Editor, Vol. 2, pp. 1-51 Academic Press, New York (1979).
- 78AUS/LIA P. Ausloos and S. G. Lias, J. Am. Chem. Soc. 100, 4594 (1978).
- 74BAT/CHR L. Batt, K. Christie, R.T. Milne, and A.J. Summers, Int. J. Chem. Kinet. 6, 877 (1974).
- 82BAU/COX D.L. Baulch, R.A. Cox, P.J. Crutzen, R.F. Hampson, Jr., J.A. Kerr, J. Troe, and R.T. Watson, J. Phys. Chem. Ref. Data 11, 327 (1982).
- 78BEA/LEE P. Beak, J.K. Lee, and J.M. Ziegler, J. Org. Chem. 43, 1536 (1978).
- 74BEA/MUE P. Beak, D.S. Mueller, and J. Lee, J. Am. Chem. Soc. 96, 3867 (1974).
- 81BEL/PER T.N. Bell, K.A. Perkins, and P.G. Perkins, J. Chem. Soc. Faraday Trans. I 77, 1779 (1981).
- 69BEN/CRU S.W. Benson, F.R. Cruickshank, D.M. Golden, G.R. Haugen, H.E. O'Neal, A.S. Rodgers, R. Shaw and R. Walsh, Chem. Rev. 69, 279 (1969).
- 70BEN/O'N S.W. Benson and H.E. O'Neal, "Kinetic Data on Gas Phase Unimolecular Reactions," NSRDS-NBS 21, (1970).
- 84BIC/PIL J. Bickerton, G. Pilcher, G. Al-Takhin, J. Chem. Thermodyn. 16, 373 (1984).
- 67BID/MCI D.R. Bidinosti, N.S. McIntyre, Can. J. Chem. 45, 641 (1967).
- 81BOM/BER D.S. Bomse, D.W. Berman, and J.L. Beauchamp, J. Am. Chem. Soc. 103, 3967 (1981).
- 82BYS K. Bystrom, J. Chem. Thermodyn. 14, 865 (1982).
- 82BYS/MAN K. Bystrom and M. Mansson, J. Chem. Soc. Perkins 2, 505 (1982).

- 77CAR/LAY J.A.S. Carson, P.G. Laye, and M. Yureali, J. Chem. Thermodyn. 9, 827 (1977).
- 76CHA/ZWO J. Chao and B.J. Zwolinski, J. Phys. Chem. Ref. Data 5, 319 (1976).
- 78CHA/ZWO J. Chao and B.J. Zwolinski, J. Phys. Chem. Ref. Data 7, 363 (1978).
- 75CHE/ROD S.S. Chen, A.S. Rodgers, J. Chao, R.C. Wilhoit, and B.J. Zwolinski, J. Phys. Chem. Ref. Data 4, 441 (1977).
- 85CHI J. S. Chickos, "Heat of Sublimation" in "Molecular Structures and Energetics" (ed. J. F. Liebman and A. Greenberg, Verlag Chemie, Weinheim, in press).
- 81CHI/HYM J. S. Chickos, A. S. Hyman, L. H. Ladon, and J. F. Liebman, J. Org. Chem. 46, 4294 (1981). Rule 2 from this reference was used to estimate heats of vaporization of liquid hydrocarbons.
- 82CHU/NGU J.Y. Chu, T.T. Nguyen, and K.D. King, J. Phys. Chem. 86, 443 (1982).
- 78COL/BEN A.J. Colussi and S.W. Benson, Int. J. Chem. Kinet. 10, 1139 (1978).
- 82COL/JIM M. Colomina, P. Jimenez, and C. Turrion, J. Chem. Thermodyn. 14, 779 (1982).
- 75COM F. Compernolle, Org. Mass. Spectrom. 10, 289 (1975).
- 82CON/ZAF J.A. Connor, M.T. Zafarani-Moattar, J. Bickerton, N.I. El-Saied, S. Suradi, R. Carson, G. Al Takkhin, and H.A. Skinner, Organometallics 1, 1166 (1982).
- 80DEF/MCI D. J. DeFrees, R. T. McIver, Jr. and W. J. Hehre, J. Am. Chem. Soc. 103, 3334 (1980).
- 80DEM/WUL R.L. Deming and C.A. Wulff, "The Thermodynamics of Allenes, Ketenes and Related Compounds," in *The* Chemistry of Ketenes, Allenes and Related Compounds, S. Patai, Editor, part 1, pp. 155-164, J. Wiley and Sons, New York (1980).
- 81ELL/DIX M. R. Ellenberger, D. A. Dixon, and W. E. Farneth, J. Am. Chem. Soc. 103, 5377 (1981).
- 79ELL/EAD M.R. Ellenberger, R.A. Eades, M.W. Thomsen, W.E. Farneth and D.A. Dixon, J. Am. Chem. Soc. 101, 7151 (1979).
- 82FUC R. Fuchs, personal communication of unpublished heat of vaporization data.
- 82FUC/HAL R. Fuchs, J.H. Hallman and M.O. Perlman, Can. J. Chem. 60, 1832 (1982).
- 83FUC/SMI R. Fuchs and N. Smith, personal communication of unpublished heat of formation and heat of vaporization data.
- 82FUR/SAK J. Furukawa, M. Sakiyama, S. Seki, Y. Saito, K. Kusano, Bull. Chem. Soc. Jpn. 55, 3329 (1982).
- 72GAF "M-PYROL: "N-Methylpyrrolidone" (GAF Corporation, New York, 1972). "M-PYROL" is a registered tradename of this compound by GAF corporation. Neither our citing this name nor reference thereto should be viewed as an

- endorsement by the authors or the U.S. government.
- 72GOR A.S. Gordon, Int. J. Chem. Kinet. 4, 541 (1972).
- 79HAC/PIL J.M. Hacking and G. Pilcher, J. Chem. Thermodyn. 11, 1015 (1979).
- 78HAR/HEA D. Harrop and A.J. Head, J. Chem. Thermodyn. 10, 705 (1978).
- 75HAR/THY P.W. Harland, and T.C.J. Thynne, Int. J. Mass Spectrom. Ion Phys. 18, 73 (1975).
- 80HOL/LOS J.L. Holmes and F.P. Lossing, J. Am. Chem. Soc. 12, 1591 (1980).
- 71JANAF D.R. Stull and H. Prophet, "JANAF Thermochemical Tables, 2nd Edition" NSRDS-NBS 37, (1971).
- 82JANAF M.W. Chase, Jr., J.L. Curnutt, J.R. Downy Jr., R.A. McDonald, A.N. Syverrud, and E.A. Valenzuela, "JANAF Thermochemical Tables 1982 Supplement," J. Phys. Chem. Ref. Data 11, 695 (1982).
- 76JEN J.L. Jensen, "Heats of Hydrogenation: A Brief Survey," Prog. Phys. Org. Chem. 12, 189 (1976).
- 83KIR/DOM* D. R. Kirklin and E. S. Domalski, J. Chem. Thermodyn. 15, 941 (1983). Heat of sublimation from 77PED/RYL.
- 82KOZ/MAS M. P. Kozina, V. S. Mastryunov, and E. M. Mil'vitshaya, Russian Chemical Review (Engl. Trans.) 51, 765 (1982).
- 78KUD/KUD S.A. Kudchadker, A.P. Kudchadker, R.C. Wilhoit, and B.J. Zwolinski, J. Phys. Chem. Ref. Data 7, 417 (1978).
- 79KUD/KUD S.A. Kudchadker, A.P. Kudchadker, R.C. Wilhoit, and D.J. Zwolinski, Thermochim. Acta 30, 319 (1979).
- 79KUD/KUD2 A.P. Kudchadker, S.A. Kudchadker, and R.C. Wilhoit, "Four-Ring Condensed Aromatic Compounds," API Monograph 709-79, American Petroleum Institute, Washington, D.C. (1979).
- 79KUD/KUD3 A.P. Kudchadker and S.A. Kudchadker, "Pyridine and Phenylpyridines," API Monograph 710-79, American Petroleum Institute, Washington, D.C. (1979).
- 79KUD/KUD4 S.A. Kudchadker, A.P. Kudchadker, and B.J. Zwolinski, J. Chem. Thermodyn. 11, 1051 (1979).
- 81KUD/KUD A.P. Kudchadker, S.A. Kudchadker, R.C. Wilhoit, and S.K. Gupta, "Acenaphthylene, Acenaphthene, Fluorene, and Fluoranthene," API Monograph, 715-81, American Petroleum Institute, Washington, D.C. (1981).
- 81KUD/KUD2 A.P. Kudchadker, S.A. Kudchadker, R.C. Wilhoit, and S.K. Gupta, "Carbazole, 9-Methylcarbazole and Acridine," in API Monograph, 71681, American Petroleum Institute, Washington, D.C. (1981).
- 81KUD/KUD3 A.P. Kudchadker, S.A. Kudchadker, R.C. Wilhoit, and S.K. Gupta, "Thiophene, 2,3- and 2,5-Dihydrothiophene and Tetrahydrothiophene," API Monograph 717-81, American Petroleum Institute, Washington, D.C. (1981).
- 77LIA/AUS S.G. Lias and P. Ausloos, Int. J. Mass Spectrom. Ion Phys. 23, 273 (1977).
- 67LOU/LAI L.F. Loucks, K.J. Laidler, Can. J. Chem. 45, 2785 (1967).
- 79MAJ/SVO V. Majer, V. Svoboda, J. Koubeck, and J. Pick, Collect. Czech. Chem. Commun. 44, 3521 (1979).
- 80MAJ/WAG V. Majer, Z. Wagner, V. Svoboda, and V. Cadek, J. Chem. Thermodyn. 12, 387 (1980).
- 82MAU M. Mautner, J. Am. Chem. Soc. 104, 5 (1982).
- 78MCC/HAM D.G. McCormick and W.S. Hamilton, J. Chem. Thermodyn. 10, 275 (1978).
- 82MCM/GOL D.F. McMillen and D.M. Golden, The Annual Review of Physical Chemistry, Vol. 33, Annual Reviews, Palo Alto, CA. (1982).
- 76MEY/HOT E.F. Meyer and C.A. Hotz, J. Chem. Eng. Data 21, 274 (1974).
- 77NAB/SAB M. Nabavian, R. Sabbah, R. Chastel, and M. Laffitte, J. Chim. Phys. 74, 115 (1977).
- 77NGA/SAB S.N. Ngauv, R. Sabbah, and M. Laffitte, Thermochim. Acta 20, 371 (1977).
- 71NUT/LAU R. L. Nuttall, A. H. Laufer, and M. V. Kilday, J. Chem. Thermodyn. 3, 107 (1971).

- 82PAM/ROG K.M. Pamidimukkala, D. Rogers, and G.B. Skinner, J. Phys. Chem. Ref. Data 11, 83 (1982).
- 82PAU/HEH C.F. Pau and W.J. Hehre, J. Phys. Chem. 86, 321 (1982).
- 82PAU/HEH2 C.F. Pau and W.J. Hehre, J. Phys. Chem. 86, 1282 (1982).
- 73PEP/GAF V.I. Pepekin, R.G. Gafurov, Yu.A. Lebedev, T. Eremenko, E.M. Sogomonyan, and A.Ya. Apin, Bull. Acad. Sci. U.S.S.R. Div. Chem. Sci. 22, 304 (1973).
- 77PED/RYL J.B. Pedley and J. Rylance, "Sussex-N.P.L. Computer Analysed Thermochemical Data: Organic and Organometallic Compounds", University of Sussex (1977).
- 79PET/MAJ L. Petros, V. Majer, J. Koubeck, V. Svoboda, and J. Pick, Collect. Czech. Chem. Commun. 44, 3533 (1979).
- 82PIE/HEH W.J. Pietro, and W.J. Hehre, J. Am. Chem. Soc. 104, 4329 (1982).
- 80POL/HEH S.K. Pollack and W.J. Hehre, Tetrahedron Lett. 21, 2483 (1980).
- 81POL/RAI S.K. Pollack, B.C. Raine, and W.J. Hehre, J. Am. Chem. Soc. 103, 6308 (1981).
- 79PRI/SAP S.J.W. Price and H.J. Sapiano, Can. J. Chem. 57, 685 (1979).
- 83RAK/BOH A. B. Rakshit and D. K. Bohme, Int. J. Mass Spectrom. Ion Phys., 49, 275 (1983).
- 71RAP/WES N.J. Rapport, E.F. Westrum Jr., and J.T.J. Andrews, J. Am. Chem. Soc. 93, 4363 (1971).
- 77REI/PRA R.C. Reid, J.M. Prausnitz and T.K. Sherwood, *The Properties of Guses and Liquids*, 3rd Edition, McGraw Hill, New York, (1977).
- 80ROG/CHO D.W. Rogers, L.S. Choi, R.S. Girellini, T.J. Holmes and N.L. Allinger, J. Phys. Chem. 84, 1810 (1980).
- 82ROY/MCM M. Roy and T.B. McMahon, Org. Mass Spectrom. 17, 392 (1982).
- 80SAB R. Sabbah, Thermochim. Acta 41, 33 (1980).
- 80SAB2 R. Sabbah, Thermochim. Acta 35, 73 (1980).
- 74SAB/CHA R. Sabbah, R. Chastel, and M. Laffitte, Thermochim. Acta 10, 353 (1974).
- 78SAB/LAF R. Sabbah and M. Laffitte, J. Chem. Thermodyn. 10, 101 (1978).
- 78SAB/LAF2 R. Sabbah and M. Laffitte, Bull. Soc. Chim. Fr. 1-50 (1978).
- 81SAB/MIN R. Sabbah and C. Mindakis, Thermochim. Acta 43, 269 (1981).
- 79SAL/PEA P.P.S. Saluja, L.A. Peacock, and R. Fuchs, J. Am. Chem. Soc. **101**, 1958 (1979).
- 74SCO D.W. Scott, "Chemical Thermodynamic Properties of Hydrocarbons and Related Substances: Properties of Alkane Hydrocarbons C1 through C10 The Ideal Gas State from 0 through 1500 K," APIRP62 Report 39, (U.S. Dept. of Interior, Bureau of Mines, 1974).
- 77SHA/GOL R. Shaw, D.M. Golden and S.W. Benson, J. Phys. Chem. 81, 1716 (1977).
- 80STA/VOG J.P. Stadelmann and J. Vogt, Int. J. Mass Spectrom. Ion Phys. 35, 83 (1980).
- 79STE W.V. Steele, J. Chem. Thermodyn. 11, 1185 (1979).
- 81STE/BAR S.E. Stein and B.D. Barton, Thermochim. Acta 44, 265 (1981).
- 77STE/GOL S.E. Stein, D.M. Golden, and S.W. Benson, J. Phys. Chem. 81, 314 (1977). We chose the results from group additivity values suggested by these authors as opposed to any other theoretical values also presented in this paper.
- 81SUR/HAC S. Suradi, J.M. Hacking, G. Pilcher, I. Gumrukcu, and M.F. Lappert, J. Chem. Thermodyn. 13, 857 (1981).
- 80SVO/UCH V. Svoboda, V. Uchytilova, V. Majer, and J. Pick, Collect. Czech. Chem. Commun. 45, 3233 (1980).
- 77TEL/RAB V.I. Tel'noi and I.B. Rabinovich, Russ. Chem. Rev. (Engl. Trans.) 46, 1337 (1977).
- 73THY/HAR T.C.J. Thynne and P.W. Harland, Int. J. Mass Spectrom. Ion Phys. 11, 399 (1973).
- 82/TN270 D.D. Wagman, W.H. Evans, V.P. Parker, R.H. Schumm, I. Halow, S.M. Bailey, K.L. Churney, and R.L. Nuttall, "The

- NBS Tables of Chemical Thermodynamic Properties," J. Chem. Ref. Data 11, Suppl. No. 2, 1982.
- 81TSA W. Tsang in "Shock Tubes in Chemistry," (A. Lifshitz, Editor; Dekker, 1981), p. 59.
- 79VAJ/HAR J.H. Vajda and A.G. Harrison, Int. J. Mass Spectrom. Ion Phys. 30, 293 (1979).
- 79VIS D.S. Viswanath, "Quinoline," API Monograph, American Petroleum Institute, Washington, D.C. (1979).
- 79VIS/WIL D.S. Viswanath and R.C. Wilhoit, "Isoquinoline," in API Monograph 712-79, American Petroleum Institute,
- Washington, D.C. (1979).
- 78VOG/WIL J. Vogt, A.D. Williamson, and J.L. Beauchamp, J. Am. Chem. Soc. **100**, 3478 (1978).
- 80WIL/BAE G.D. Willett and T. Baer, J. Am. Chem. Soc. 102, 6774 (1980).
- 76WIL/LEB A.D. Williamson, P.R. LeBreton, and J.L. Beauchamp, J. Am. Chem. Soc. 98, 2705 (1976).
- 80WOL/HOL P. Wolkoff, J.L. Holmes and F.P. Lossing, Can. J. Chem. 58, 251 (1980).